• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Studies on Modified Clay Additives to Impart Iodide Sorption Capacity to Bentonite in the Context of Safe Disposal of High Level Nuclear Waste

Sivachidambaram, S January 2012 (has links) (PDF)
It is a generally agreed internationally that high level nuclear wastes containing long-lived radioactive wastes should be disposed in deep and stable geological formations that are 500-1000 m below ground level. Deep geological disposal is based on the concept of multiple barriers to prevent deep ground-waters, present in almost all rock formations, from rapidly leaching the wastes and transporting radioactivity away from the repository. The multiple barrier system comprises of ‘engineered barriers’ that are constructed in the repository and ‘natural barriers’ in the surrounding geological environment. The engineered barrier components comprise of the vitrified solid waste, canister (to contain the vitrified waste), and a buffer or backfill material (clay or cement) that fills the annular space between the canister and the walls of the hole drilled in the floor of host-rock. The natural barrier is provided by the rocks and soils between the repository and earth’s surface. The canisters containing the hig level waste (HLW) upon placement in DGR need protection against tectonic activities and chemical attack by dissolved elements and from microbes. Densely compacted bentonite is identified suitable for this purpose owing to its large swell potential, low permeability, sufficient bearing capacity and high cation adsorption capacity. In the deep geological repository (DGR) for disposal of high level nuclear wastes, iodine-129 is one of the significant nuclides, owing to its long half-life (half life = 16 million years) and tendency to easily migrate out of the geological repository into the biosphere caused by its high solubility and poor sorption onto most geologic media. Bentonite buffer by virtue of negatively charged basal surface has negligible affinity for retention of iodide anions. Attempts have been made to improve the iodide retention capacity of bentonite by treating the clay with cationic polymers, this however occurs at the cost of reduced swelling ability of bentonite clay. The compacted bentonite employed in deep geological repositories must possess large swell potential to enable it to close fissures and cracks that form on drying of the expansive clay by the heat arising from the high level nuclear waste and thereby close pathways for migration of radionuclides (from breached canister) to the geo-environment. Therefore, it becomes important to identify an additive that enhances the iodide retention ability of the mix without significantly impairing its swelling ability. Based on the strong affinity of silver for iodide ions, the feasibility of mixing silver-kaolinite (termed AgK) clay with bentonite to improve the latter’s iodide sorption capacity and the impact of mixing AgK clay with bentonite on swelling ability of the mix forms one of the the focus of this thesis. Silver-kaolinite clay was prepared by heating 80% kaolinite + 20% silver nitrate mix at 400°C for 30 min, followed by washing (to remove unreacted silver nitrate) and oven-drying the resultant AgK clay. Physical mixing of AgK and bentonite was considered a viable proposition as small additions (10% to 20% on dry mass basis) besides imparting iodide sorption ability was expected to have minor influence on the swelling ability of the mix. As organo-bentonites are known to retain iodide ions, it was considered relevant to compare the iodide removal behaviour of AgK and organo¬bentonite clay. Hexadecylpyridinium-bentonite (termed as HDPy+B) is the organo¬bentonite examined in this thesis and is prepared by treating bentonite with hexadecylpyridinium chloride mono hydrate salt (C21H38ClN.H2O; molecular weight = 358.01). The hexadecylpyridinium chloride mono hydrate salt is a cationic quaternary ammonium compound and has been used by earlier researchers to prepare organo-bentonite for removal of iodide ions from aqueous solutions. The impact of mixing AgK and HDPy+B clays on the iodide retention and swelling behaviour of bentonite is also considered in the thesis. The mass-balance calculations, XRD analysis, X-ray photon emission survey spectrum and EPMA tests performed on kaolinite-silver nitrate mix/AgK/kaolinite specimen indicated that silver occurs as uniform coatings of AgO/Ag2O on kaolinite surface of the AgK specimen. The AgK clay has strong affinity for iodide ions reflected by the large distribution coefficients (Kd) values of 1367 and 293 mL/g at initial iodide concentrations of 750 mg/L and 1000 mg/L. Further, the sorption process was rapid, unaffected by the presence of co-ions, elevated temperature of sorption and was practically irreversible at range of pH conditions. The iodide retention by AgK is attributed to occurrence of hydrolysis and exchange reactions. On contacting the AgK with water, the AgO species hydrolyze to form AgOH; iodide ions are retained by replacing the hydroxyl group of AgOH leading to formation of AgI phase. The adsorption of HDPy+Cl- ions by bentonite occurs by replacement of the native exchangeable cations by HDPy+ ions and adsorption by van der Waals interactions between the organic cations and the clay surface. The adsorbed cationic polymer neutralize the negative charge of the clay surface. Zeta potential measurements of HDPy+B specimen indicated that adsorption of cationic polymer transforms the negatively charged clay particles into positively charged particles that favour anion adsorption. Sorption of iodide ions by HDPy+B specimen exhibits two distinct segments: 1) the iodide sorption increased rapidly at lower iodide concentration (91 mg/L to 475 mg/L) and are retained by Coulombic adsorption to the cationic groups contained in the loops and tails of the adsorbed polymer (primary adsorption sites) and 2) the relatively slower adsorption at higher iodide concentrations (larger than 475 mg/L) is attributed to exchange with chloride ions attached to HDPy+Cl-ion pair (secondary adsorption sites). The Kd values for iodide adsorption vary from 15 mL/g to 184 mL/g at initial iodide concentrations of 91 mg/L to 996 mg/L respectively. Comparing the iodide removal efficiencies of AgK and HDPy+B specimens revealed that the AgK clay exhibited larger iodide removal; further while the iodide removal by AgK specimen was almost instantaneous (complete in < 5 min), iodide removal by HDPy+B specimen was a slow process (18-24 h is needed to attain equilibrium). Likewise, the iodide retention capacity of the 50%B-50%HDPy+B mix (B = bentonite) is substantially smaller than of the 90%B-10%AgK and 80%B¬20%AgK mixes. Cation exchange capacity (CEC) measurements brought out that mixing AgK with bentonite besides imparting an iodide retention capacity essentially retains the large cation exchange capacity of the expansive clay. On the other hand mixing HDPy+B with bentonite imparts a smaller iodide retention capacity to the mix and leads to a notable reduction in the CEC of the expansive clay. Results of oedometer swell tests brought out that dilution of bentonite with 10% and 20% AgK specimen does not impact its swell potential and leads to some (10%) reduction in swell pressure, while dilution with 50% HDPy+B clay leads to notable (58%) reduction in swell potential and swell pressure (21%) underlining the superiority of AgK specimen as additive to bentonite in deep geological repositories. The swell pressure of the compacted 50%B-50%HDPy+B mix is 21% lower than that of the compacted bentonite specimen. Comparatively, dilution of bentonite with 10% and 20% AgK specimen induces 8-10% lower swell pressure in comparison to the undiluted counterpart. Swell pressure results of compacted 80%B-20%HDPy+B mix is not considered as this mix was unable to retain iodide ions. Superposing the field 129I concentration levels on I removal efficiency indicate that use of 90%B-10%AgK mix would suffice to provide 100% iodide removal efficiency and ensure that the swelling characteristics of bentonite is least affected by dilution.

Page generated in 0.0694 seconds