Spelling suggestions: "subject:"ailver tantalate"" "subject:"asilver tantalate""
1 |
Silver Tantalate: a High Temperature Tribological InvestigationStone, D’Arcy S. 12 1900 (has links)
As technology advances, mechanical and electrical systems are subjugated to intense temperature fluctuations through their service life. Designing coatings that operate in extreme temperatures is, therefore, a continuing challenge within the tribology community. Silver tantalate was chosen for investigation at the atomic level, the physical and chemical properties that influence the thermal, mechanical, and tribological behavior for moving assemblies in high temperature tribological applications. By correlating behavior of internal physical processes to the macro tribological behavior, the tribological community will potentially gain improved predicative performance of solid lubricants in future investigations. Three different approaches were explored for the creation of such materials on Inconel substrates: (1) powders produced using a solid state which were burnished on the surface; (2) monolithic silver tantalate thin films deposited by magnetron sputtering; and, (3) an adaptive tantalum nitride/silver nanocomposite sputter-deposited coating that forms a lubricious silver tantalate oxide on its surface when operated at elevated temperatures. Dry sliding wear tests of the coatings against Si3N4 counterfaces revealed friction coefficients in the 0.06 - 0.15 range at T ~ 750 °C. Reduced friction coefficients were found in nanocomposite materials that contained primarily a AgTaO3 phase with a small amount of segregated Ag phase, as suggested by structural characterization using X-ray diffraction. The presence of nanoparticles of segregated Ag in the thin films further enhanced the performance of these materials by increasing their toughness. Additional characterization of the AgTaO3 films at 750 °C under normal loads of 1, 2, 5, or 10 N revealed that the friction monotonically increased as the load was increased. These results were complemented by molecular dynamics simulations, which confirmed the increase of friction with load. Further, the simulations support the hypothesis that this trend can be explained in terms of decreased presence of Ag clusters near the sliding surface and the associated decreased porosity. The results suggest that the relative amount of Ag in a TaN or Ta2O5 mastrix may be used to tune film performance for a given application.
|
2 |
Novel tantalate-niobate films for microwavesKim, Jang-Yong January 2005 (has links)
<p>Microwave materials have been widely used in a variety of applications ranging from communication devices to military satellite services, and the study of materials properties at microwave frequencies and the development of functional microwave materials have always been among the most active areas in solid-state physics, materials science, and electrical and electronic engineering. In recent years, the increasing requirements for the development of high speed, high frequency circuits and systems require complete understanding of the properties of materials function at microwave frequencies.</p><p>Ferroelectric materials usually have high dielectric constants, and their dielectric properties are temperature and electric field dependent. The change in permittivity as a function of electric field is the key to a wide range of applications. Ferroelectric materials can be used in fabrication capacitors for electronic industry because of their high dielectric constants, and this is important in the trend toward miniaturization and high functionality of electronic products. The simple tunable passive component based on ferroelectric films is a varactor which can be made as a planar structure, and electrically tunable microwave integrated circuits using ferroelectric thin films can be developed. Therefore, it is very important to characterize the dielectric constant and tunability of ferroelectric thin films.</p><p>This thesis shows experimental results for growth, crystalline properties and microwave characterization of Na0.5K0.5NbO3 (NKN), AgTa0.5Nb0.5O3 (ATN), Ba0.5Sr0.5TiO3 (BST) as well as AgTaO3 (ATO), AgNbO3 (ANO) thin films. The films were grown by Pulsed Laser Deposition (PLD) and rf-magnetron sputtering of a stoichiometric, high density, ceramic NKN, ATN, BST target onto single crystal LaAlO3(LAO), Al2O3 (sapphire), and Nd:YAlO3, and amorphous glass substrates. By x-ray diffractometry, NKN, ATN, BST films on LAO substrates were found to grow epitaxially, whereas films on r-cut sapphire substrates were found to be preferentially (00l) oriented.</p><p>Coplanar waveguide interdigital capacitor (CPWIDC) structures were fabricated by standard photolithography processing and metal lift-off technique. Microwave properties of the NKN/Sapphire and ATN/Sapphire with CPW structures were characterized using on-wafer microwave measurement technique. Measurement setup is composed of network analyzer, probe station, and microwave G-S-G probes. External electric field through the connection between network analyzer and power supply was applied to measure voltage tunability. Measured S-parameter were used for the calculation of capacitance, loss tanδ, tunability and K-factor.</p><p>The NKN films interdigital capacitors with 2 μm finger gap on Nd:YAlO3 showed superior performance compared to ATN in the microwave range from 1 to 40 GHz. Within this range, the voltage tunability (40V, 200 kV/cm) was about 29%, loss tangent ∼ 0.13, K-factor = tunability/tanδ from 152% @ 10GHz to 46% @ 40GHz.</p><p>The microwave performance of ATN film CPWIDC with 2 μm finger gap on sapphire substrate in the microwave range from 1 to 40 GHz showed that frequency dispersion is about 4.3%, voltage tunability was 4.7% @ 20GHz and 200 kV/cm, loss tangent ∼ 0.068 @ 20GHz, K-factor = tunability/tanδ is ranged from 124% @ 10GHz to 35% @ 40GHz.</p><p>The BST films CPWIDC with 2μmfinger gap on Al2O3 substrate showed frequency dispersion of capacitance in the microwave range from 1 to 40 GHz about 17%, voltage tunability = 1 - C(40V)/C(0) ∼ 22.2%, loss tangent ∼ 0.137 @ 20GHz, and K-factor = tunability/tanδ from 281% @ 10GHz to 95% @ 40GHz.</p>
|
3 |
Novel tantalate-niobate films for microwavesKim, Jang-Yong January 2005 (has links)
Microwave materials have been widely used in a variety of applications ranging from communication devices to military satellite services, and the study of materials properties at microwave frequencies and the development of functional microwave materials have always been among the most active areas in solid-state physics, materials science, and electrical and electronic engineering. In recent years, the increasing requirements for the development of high speed, high frequency circuits and systems require complete understanding of the properties of materials function at microwave frequencies. Ferroelectric materials usually have high dielectric constants, and their dielectric properties are temperature and electric field dependent. The change in permittivity as a function of electric field is the key to a wide range of applications. Ferroelectric materials can be used in fabrication capacitors for electronic industry because of their high dielectric constants, and this is important in the trend toward miniaturization and high functionality of electronic products. The simple tunable passive component based on ferroelectric films is a varactor which can be made as a planar structure, and electrically tunable microwave integrated circuits using ferroelectric thin films can be developed. Therefore, it is very important to characterize the dielectric constant and tunability of ferroelectric thin films. This thesis shows experimental results for growth, crystalline properties and microwave characterization of Na0.5K0.5NbO3 (NKN), AgTa0.5Nb0.5O3 (ATN), Ba0.5Sr0.5TiO3 (BST) as well as AgTaO3 (ATO), AgNbO3 (ANO) thin films. The films were grown by Pulsed Laser Deposition (PLD) and rf-magnetron sputtering of a stoichiometric, high density, ceramic NKN, ATN, BST target onto single crystal LaAlO3(LAO), Al2O3 (sapphire), and Nd:YAlO3, and amorphous glass substrates. By x-ray diffractometry, NKN, ATN, BST films on LAO substrates were found to grow epitaxially, whereas films on r-cut sapphire substrates were found to be preferentially (00l) oriented. Coplanar waveguide interdigital capacitor (CPWIDC) structures were fabricated by standard photolithography processing and metal lift-off technique. Microwave properties of the NKN/Sapphire and ATN/Sapphire with CPW structures were characterized using on-wafer microwave measurement technique. Measurement setup is composed of network analyzer, probe station, and microwave G-S-G probes. External electric field through the connection between network analyzer and power supply was applied to measure voltage tunability. Measured S-parameter were used for the calculation of capacitance, loss tanδ, tunability and K-factor. The NKN films interdigital capacitors with 2 μm finger gap on Nd:YAlO3 showed superior performance compared to ATN in the microwave range from 1 to 40 GHz. Within this range, the voltage tunability (40V, 200 kV/cm) was about 29%, loss tangent ∼ 0.13, K-factor = tunability/tanδ from 152% @ 10GHz to 46% @ 40GHz. The microwave performance of ATN film CPWIDC with 2 μm finger gap on sapphire substrate in the microwave range from 1 to 40 GHz showed that frequency dispersion is about 4.3%, voltage tunability was 4.7% @ 20GHz and 200 kV/cm, loss tangent ∼ 0.068 @ 20GHz, K-factor = tunability/tanδ is ranged from 124% @ 10GHz to 35% @ 40GHz. The BST films CPWIDC with 2μmfinger gap on Al2O3 substrate showed frequency dispersion of capacitance in the microwave range from 1 to 40 GHz about 17%, voltage tunability = 1 - C(40V)/C(0) ∼ 22.2%, loss tangent ∼ 0.137 @ 20GHz, and K-factor = tunability/tanδ from 281% @ 10GHz to 95% @ 40GHz. / QC 20101207
|
Page generated in 0.0556 seconds