Spelling suggestions: "subject:"cimetria Z (N)"" "subject:"asimetria Z (N)""
1 |
Grupo de renormalização e resultados exatos em modelos Z (N) unidimensionais / Exact renormalization group results for 1-dimensional Z(N) modelsCressoni, Jose Carlos 07 December 1981 (has links)
O comportamento critico de sistemas unidimensionais de spin do tipo Z(N) na ausência de campos magnéticos, é estudado sob a luz da teoria do grupo de renormalização. Os modelos são resolvidos exatamente pelo método da matriz de transferência e expressões para as funções de correlação e susceptibilidade (a campo zero) por si tio são também calculadas. As transformações do grupo de renormalização são efetuadas através de um traço parcial na função de partição, obtendo- se um conjunto de relações de recorrência que podem ser escritas de maneira simples para qualquer valor inteiro do fator de reescala espacial, mediante o uso de campos de escala convenientes. Tirando vantagem de um ponto fixo inteiramente atrativo, calculamos uma expressão para a energia livre por sitio, exata para T ¢ O. Analisamos o comportamento de nossos modelos no espaço de parâmetros, onde identificamos em particular as ~s ferro e antiferromagnéticas. O problema de correções às previsões de escala em termos de campos de escala não lineares é discutido. Aventamos também a possibilidade de calcular os auto valores da matriz de transferência através dos campos não lineares / In this work we study the criticai behaviour of one dimensional Z(N) spin systems in zero magnetic fields, using the approach of the renormalization group (RG) theory. The models are solved by the transfer matrix method and expressions for the correlation functions and zero field susceptibility per site are found. The RG transformations are carried out via a partial trace over the partition function and one obtains a set of recursion relations which, with the use of a convenient set of scaling fields, are written out in a simple manner for any integer value of the spatial rescaling factor. Using a totaly attractive fixed point we calculate an expression for the free energy per site, valid exactly for non zero values of the temperature. We analyse the behaviour of our models in the space of parameters, identifying in particular ferro and antiferromagnetic regions. The problem of corrections to scaling in terms of nonlinear scaling fields is discussed and a possibility of finding the eigen values of the transfer matrix from such fields is contemplated
|
2 |
Grupo de renormalização e resultados exatos em modelos Z (N) unidimensionais / Exact renormalization group results for 1-dimensional Z(N) modelsJose Carlos Cressoni 07 December 1981 (has links)
O comportamento critico de sistemas unidimensionais de spin do tipo Z(N) na ausência de campos magnéticos, é estudado sob a luz da teoria do grupo de renormalização. Os modelos são resolvidos exatamente pelo método da matriz de transferência e expressões para as funções de correlação e susceptibilidade (a campo zero) por si tio são também calculadas. As transformações do grupo de renormalização são efetuadas através de um traço parcial na função de partição, obtendo- se um conjunto de relações de recorrência que podem ser escritas de maneira simples para qualquer valor inteiro do fator de reescala espacial, mediante o uso de campos de escala convenientes. Tirando vantagem de um ponto fixo inteiramente atrativo, calculamos uma expressão para a energia livre por sitio, exata para T ¢ O. Analisamos o comportamento de nossos modelos no espaço de parâmetros, onde identificamos em particular as ~s ferro e antiferromagnéticas. O problema de correções às previsões de escala em termos de campos de escala não lineares é discutido. Aventamos também a possibilidade de calcular os auto valores da matriz de transferência através dos campos não lineares / In this work we study the criticai behaviour of one dimensional Z(N) spin systems in zero magnetic fields, using the approach of the renormalization group (RG) theory. The models are solved by the transfer matrix method and expressions for the correlation functions and zero field susceptibility per site are found. The RG transformations are carried out via a partial trace over the partition function and one obtains a set of recursion relations which, with the use of a convenient set of scaling fields, are written out in a simple manner for any integer value of the spatial rescaling factor. Using a totaly attractive fixed point we calculate an expression for the free energy per site, valid exactly for non zero values of the temperature. We analyse the behaviour of our models in the space of parameters, identifying in particular ferro and antiferromagnetic regions. The problem of corrections to scaling in terms of nonlinear scaling fields is discussed and a possibility of finding the eigen values of the transfer matrix from such fields is contemplated
|
3 |
Teorias de calibre na rede com simetria z (n) / Lattice gauge theories with Z(N) symmetryNobre, Fernando Dantas 22 June 1981 (has links)
Discutimos um modelo de calibre com simetria Z (N) na rede, sendo as variáveis dinâmicas definidas em faces de cubos. Mostramos a dualidade com um sistema de spins Z (N) em quatro dimensões e a autodualidade em seis dimensões para este modelo, utilizando o formalismo da matriz de transferência. Analisamos as funções de correlação invariantes por transformações de calibre, constatando os decaimentos exponenciais com o volume (para altas temperaturas e d ≥ 3) e com a área (para baixas temperaturas e d > 3). Para três dimensões, o modelo não apresenta transição de fase sendo exatamente solúvel. Estudamos também a versão U (1) do modelo e mostramos sua equivalência com uma teoria de campos clássica livre na região de baixas temperaturas / We discussus a model with a Z (N) gauge symmetry on a lattice, the dynamical variables being defined on faces of cubes. The duality with a Z (N) spin system in four dimensions and the selfduality in six dimensions is shown for this model, using the transfer matrix formalism. The gauge invariant correlation functions have been analysed and we verify their exponential decay with volume (at high temperatures and d ≥ 3) and with the área (at low temperatures and d > 3). For three dimensions, the model exhibits no phase transition, being exactly soluble. We also study a U (I) version o four model and show its equivalence with a free classical field theory in the low temperature region
|
4 |
Teorias de calibre na rede com simetria z (n) / Lattice gauge theories with Z(N) symmetryFernando Dantas Nobre 22 June 1981 (has links)
Discutimos um modelo de calibre com simetria Z (N) na rede, sendo as variáveis dinâmicas definidas em faces de cubos. Mostramos a dualidade com um sistema de spins Z (N) em quatro dimensões e a autodualidade em seis dimensões para este modelo, utilizando o formalismo da matriz de transferência. Analisamos as funções de correlação invariantes por transformações de calibre, constatando os decaimentos exponenciais com o volume (para altas temperaturas e d ≥ 3) e com a área (para baixas temperaturas e d > 3). Para três dimensões, o modelo não apresenta transição de fase sendo exatamente solúvel. Estudamos também a versão U (1) do modelo e mostramos sua equivalência com uma teoria de campos clássica livre na região de baixas temperaturas / We discussus a model with a Z (N) gauge symmetry on a lattice, the dynamical variables being defined on faces of cubes. The duality with a Z (N) spin system in four dimensions and the selfduality in six dimensions is shown for this model, using the transfer matrix formalism. The gauge invariant correlation functions have been analysed and we verify their exponential decay with volume (at high temperatures and d ≥ 3) and with the área (at low temperatures and d > 3). For three dimensions, the model exhibits no phase transition, being exactly soluble. We also study a U (I) version o four model and show its equivalence with a free classical field theory in the low temperature region
|
5 |
Estudo de sistemas de spins a duas dimensões e de calibre a quatro dimensões com simetria Z(N) / Spin systems in two dimensions and Gauge theories in four dimensions with Z(N) symmetryAlcaraz, Francisco Castilho 28 August 1980 (has links)
Usando uma transformação de dualidade generalizada, considerações de simetria e supondo que as superfície críticas sejam contínuas, obtivemos o dia grama de fase para sistemas de spins Z (N) bidimensionais e sistemas com invariança de calibre Z (N) a quatro dimensões. Caracterizamos as diversas fases dos sistemas de spins pelo valor esperado das potências dos operadores de ordem e desordem. No sistema com invariança de calibre, por outro lado, estas fases caracterizadas pelo comportamento do valor esperado das potências das alças de Wilson e de \'t Hooft. Obtivemos para ambos os sistemas fases moles em que no caso de spins 2D (calibre 4D) todas as potências dos parâmetros de ordem e desordem ( todas as potências das alças de Wilson e \'t Hooft) são nulas (exibem decaimento com o perímetro da alça). Enquanto no sistema com invariança de calibre todas as combinações de decaimento (área ou perímetro) das alças de Wilson e \'t Hooft são permitidas, as relações de comutação no sistema de spins proíbe a existência de fases em que tanto o parâmetro de ordem como o de desordem são não nulos (exceto quando estes operadores comutam). Apresentamos por completeza as relações de dualidade para sistemas de calibre Z (N) com campos de Higgs a três dimensões. / Using a generalized duality transformation, symetry considerations and assuming that criticality is continuous in the system?s parameters, we obtain the phase diagram for two-dimensional Z (N) spins system?s and four-dimensional gauge Z (N) system\'s. For spins system we characterize the various phases by the expectation value of powers of the order and disorder operators. For gauge systems, on the other hand, the characterization is via decay law of powers of Wilson and \'t Hooft loops. We obtain soft phases for both systems, with the folowing, behaviour: for spins system all powers of order and disorder parameters vanish, whereas for gauge systems all powers of Wilson and \'t Hooft loops decay like the perimeter. Whereas all combinations of area and perimeter decay are allowed for Wilson\'s and \'t Hooft\'s loops, the Z (N) commutation relations for spin systems forbid the simultaneous non-vanishing of order and disorder parameters (except when these operators commute). For completeness we include the duality relations for three-dimensional gauge plus Higgs Z(N) systems.
|
6 |
Estudo de sistemas de spins a duas dimensões e de calibre a quatro dimensões com simetria Z(N) / Spin systems in two dimensions and Gauge theories in four dimensions with Z(N) symmetryFrancisco Castilho Alcaraz 28 August 1980 (has links)
Usando uma transformação de dualidade generalizada, considerações de simetria e supondo que as superfície críticas sejam contínuas, obtivemos o dia grama de fase para sistemas de spins Z (N) bidimensionais e sistemas com invariança de calibre Z (N) a quatro dimensões. Caracterizamos as diversas fases dos sistemas de spins pelo valor esperado das potências dos operadores de ordem e desordem. No sistema com invariança de calibre, por outro lado, estas fases caracterizadas pelo comportamento do valor esperado das potências das alças de Wilson e de \'t Hooft. Obtivemos para ambos os sistemas fases moles em que no caso de spins 2D (calibre 4D) todas as potências dos parâmetros de ordem e desordem ( todas as potências das alças de Wilson e \'t Hooft) são nulas (exibem decaimento com o perímetro da alça). Enquanto no sistema com invariança de calibre todas as combinações de decaimento (área ou perímetro) das alças de Wilson e \'t Hooft são permitidas, as relações de comutação no sistema de spins proíbe a existência de fases em que tanto o parâmetro de ordem como o de desordem são não nulos (exceto quando estes operadores comutam). Apresentamos por completeza as relações de dualidade para sistemas de calibre Z (N) com campos de Higgs a três dimensões. / Using a generalized duality transformation, symetry considerations and assuming that criticality is continuous in the system?s parameters, we obtain the phase diagram for two-dimensional Z (N) spins system?s and four-dimensional gauge Z (N) system\'s. For spins system we characterize the various phases by the expectation value of powers of the order and disorder operators. For gauge systems, on the other hand, the characterization is via decay law of powers of Wilson and \'t Hooft loops. We obtain soft phases for both systems, with the folowing, behaviour: for spins system all powers of order and disorder parameters vanish, whereas for gauge systems all powers of Wilson and \'t Hooft loops decay like the perimeter. Whereas all combinations of area and perimeter decay are allowed for Wilson\'s and \'t Hooft\'s loops, the Z (N) commutation relations for spin systems forbid the simultaneous non-vanishing of order and disorder parameters (except when these operators commute). For completeness we include the duality relations for three-dimensional gauge plus Higgs Z(N) systems.
|
Page generated in 0.0427 seconds