Spelling suggestions: "subject:"simplification dde trellis"" "subject:"simplification dde recueillis""
1 |
Vers une approche hybride mêlant arbre de classification et treillis de Galois pour de l'indexation d'images / Towards an hybrid model between decision trees and Galois lattice for image indexing and classificationGirard, Nathalie 05 July 2013 (has links)
La classification d'images s'articule généralement autour des deux étapes que sont l'étape d'extraction de signatures suivie de l'étape d'analyse des données extraites, ces dernières étant généralement quantitatives. De nombreux modèles de classification ont été proposés dans la littérature, le choix du modèle le plus adapté est souvent guidé par les performances en classification ainsi que la lisibilité du modèle. L'arbre de classification et le treillis de Galois sont deux modèles symboliques connus pour leur lisibilité. Dans sa thèse [Guillas 2007], Guillas a utilisé efficacement les treillis de Galois pour la classification d'images, et des liens structurels forts avec les arbres de classification ont été mis en évidence. Les travaux présentés dans ce manuscrit font suite à ces résultats, et ont pour but de définir un modèle hybride entre ces deux modèles, qui réunissent leurs avantages (leur lisibilité respective, la robustesse du treillis et le faible espace mémoire de l'arbre). A ces fins, l'étude des liens existants entre les deux modèles a permis de mettre en avant leurs différences. Tout d'abord, le type de discrétisation, les arbres utilisent généralement une discrétisation locale tandis que les treillis, initialement définis pour des données binaires, utilisent une discrétisation globale. A partir d'une étude des propriétés des treillis dichotomiques (treillis définis après une discrétisation), nous proposons une discrétisation locale pour les treillis permettant d'améliorer ses performances en classification et de diminuer sa complexité structurelle. Puis, le processus de post-élagage mis en œuvre dans la plupart des arbres a pour objectif de diminuer la complexité de ces derniers, mais aussi d'augmenter leurs performances en généralisation. Les simplifications de la structure de treillis (exponentielle en la taille de données dans les pires cas), quant à elles, sont motivées uniquement par une diminution de la complexité structurelle. En combinant ces deux simplifications, nous proposons une simplification de la structure du treillis obtenue après notre discrétisation locale et aboutissant à un modèle de classification hybride qui profite de la lisibilité des deux modèles tout en étant moins complexe que le treillis mais aussi performant que celui-ci. / Image classification is generally based on two steps namely the extraction of the image signature, followed by the extracted data analysis. Image signature is generally numerical. Many classification models have been proposed in the literature, among which most suitable choice is often guided by the classification performance and the model readability. Decision trees and Galois lattices are two symbolic models known for their readability. In her thesis {Guillas 2007}, Guillas efficiently used Galois lattices for image classification. Strong structural links between decision trees and Galois lattices have been highlighted. Accordingly, we are interested in comparing models in order to design a hybrid model between those two. The hybrid model will combine the advantages (robustness of the lattice, low memory space of the tree and readability of both). For this purpose, we study the links between the two models to highlight their differences. Firstly, the discretization type where decision trees generally use a local discretization while Galois lattices, originally defined for binary data, use a global discretization. From the study of the properties of dichotomic lattice (specific lattice defined after discretization), we propose a local discretization for lattice that allows us to improve its classification performances and reduces its structural complexity. Then, the process of post-pruning implemented in most of the decision trees aims to reduce the complexity of the latter, but also to improve their classification performances. Lattice filtering is solely motivated by a decrease in the structural complexity of the structures (exponential in the size of data in the worst case). By combining these two processes, we propose a simplification of the lattice structure constructed after our local discretization. This simplification leads to a hybrid classification model that takes advantage of both decision trees and Galois lattice. It is as readable as the last two, while being less complex than the lattice but also efficient.
|
Page generated in 0.1024 seconds