• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

DETECÇÃO DE MASSAS EM IMAGENS MAMOGRÁFICAS USANDO ÍNDICE DE DIVERSIDADE DE SIMPSON E MÁQUINA DE VETORES DE SUPORTE. / Mass detection in mammography images using SIMPSON's diversity index and vectoring machine support.

NUNES, André Pereira 20 February 2009 (has links)
Submitted by Maria Aparecida (cidazen@gmail.com) on 2017-08-21T14:59:23Z No. of bitstreams: 1 Andre Pereira.pdf: 3105574 bytes, checksum: 06e2fe68d48179a3c62a46e447b82513 (MD5) / Made available in DSpace on 2017-08-21T14:59:23Z (GMT). No. of bitstreams: 1 Andre Pereira.pdf: 3105574 bytes, checksum: 06e2fe68d48179a3c62a46e447b82513 (MD5) Previous issue date: 2009-02-20 / Breast cancer is one of the major causes of mortality among women throughout the world. Presently, the analysis of breast radiography is the most used method to early detection of this kind of cancer. It enables the identification of anomalies at their initial stage, which is a fundamental factor for success in the treatment. The sensitivity of this kind of exam, although, depends on several factors, such as the size and the location of the abnormalities, density of the breast tissue, quality of the technical resources and radiologist's ability. This work presents a methodology that uses the K-Means clustering algorithm and the Template Matching technique for segmentation of suspicious regions. Next, geometry and texture features are extracted from each of these regions, being the texture described by the Simpson's Diversity Index, a statistic used in Ecology to measure the biodiversity of an ecosystem. Finally, this information is submitted to a Support Vector Machine so that the suspicious regions are classified into masses and non-masses. The methodology was tested with 650 mammographic images from the DDSM database, achieving 83.94% of accuracy, 83.24% of sensibility and 84.14% of specificity in average. / O câncer de mama é uma das maiores causas de mortalidade entre as mulheres no mundo todo. Atualmente, a análise da radiografia da mama é o recurso mais utilizado na detecção precoce desse tipo de câncer, pois possibilita a identificação de anomalias em sua fase inicial, fator fundamental para o sucesso do tratamento. A sensibilidade desse tipo de exame, no entanto, depende de diversos fatores, tais como tamanho e localização das anomalias, densidade do tecido mamário, qualidade dos recursos técnicos e habilidade do radiologista. Este trabalho apresenta uma metodologia para detecção de massas em imagens digitais de mamografias que poderá auxiliar o especialista em sua análise. O método proposto utiliza o algoritmo de agrupamento K-Means e a técnica de Template Matching para segmentar as regiões suspeitas de conterem massas. Em seguida, medidas de geometria e textura são extraídas de cada uma dessas regiões, sendo a textura descrita através do Índice de Diversidade de Simpson, uma estatística usada na Ecologia para mensurar a biodiversidade de um ecossistema. Finalmente, essas informações são submetidas a uma Máquina de Vetores de Suporte para que as regiões suspeitas sejam classificadas em massas ou não massas. A metodologia foi testada com 650 imagens mamográficas obtidas da base de dados DDSM, atingindo 83,94% de acurácia, 83,24% de sensibilidade, e 84,14% de especificidade em média.
2

Analysis of Herpetofauna Diversity and Trends in Upland Northern Mississippi Hardwood Forest and Retired Farmland

Muia, Claire 03 August 2023 (has links)
No description available.

Page generated in 0.0517 seconds