• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rapid social regulation of 3β-HSD activity in the songbird brain

Pradhan, Devaleena S. 11 1900 (has links)
Rapid increases in plasma androgens are generally associated with short-term aggressive challenges in many breeding vertebrates. However, some animals such as song sparrows (Melospiza melodia) are aggressive year-round, even during the non-breeding season, when gonads are regressed and systemic testosterone (T) levels are non-detectable. In contrast, levels of the prohormone dehydroepiandrosterone (DHEA) are elevated year-round in the plasma and brain. The local conversion of brain DHEA to potent androgens may be critical in regulating non-breeding aggression. 3β-hydroxysteroid dehydrogenase/Δ4-Δ5 isomerase (3β-HSD) catalyzes DHEA conversion to androstenedione (AE) and the cofactor NAD⁺ assists in this transformation. In this thesis, I asked whether brain 3β-HSD activity is regulated by social encounters in seasonally breeding male songbirds. In Experiment 1, I looked at the long-term seasonal regulation of brain 3β-HSD activity. 3β-HSD activity was highest in the non-breeding season compared to the breeding season and molt. In Experiment 2, I hypothesized that brain 3β-HSD activity is rapidly regulated by short-term social encounters during the non-breeding season. A 30 min social challenge increased aggressive behavior. Without exogenous NAD⁺, there was ~355% increase in 3β-HSD activity in the caudal telencephalon and ~615% increase in the medial central telencephalon compared to controls (p<0.05). With exogenous NAD⁺, there was no effect of social challenge on 3β-HSD activity. These data suggest that endogenous cofactors play a critical role in the neuroendocrine response to social challenges. The increase in brain DHEA conversion to AE during social challenges may be a mechanism to rapidly increase local androgens in the non-breeding season, when there are many costs of systemic T.
2

Rapid social regulation of 3β-HSD activity in the songbird brain

Pradhan, Devaleena S. 11 1900 (has links)
Rapid increases in plasma androgens are generally associated with short-term aggressive challenges in many breeding vertebrates. However, some animals such as song sparrows (Melospiza melodia) are aggressive year-round, even during the non-breeding season, when gonads are regressed and systemic testosterone (T) levels are non-detectable. In contrast, levels of the prohormone dehydroepiandrosterone (DHEA) are elevated year-round in the plasma and brain. The local conversion of brain DHEA to potent androgens may be critical in regulating non-breeding aggression. 3β-hydroxysteroid dehydrogenase/Δ4-Δ5 isomerase (3β-HSD) catalyzes DHEA conversion to androstenedione (AE) and the cofactor NAD⁺ assists in this transformation. In this thesis, I asked whether brain 3β-HSD activity is regulated by social encounters in seasonally breeding male songbirds. In Experiment 1, I looked at the long-term seasonal regulation of brain 3β-HSD activity. 3β-HSD activity was highest in the non-breeding season compared to the breeding season and molt. In Experiment 2, I hypothesized that brain 3β-HSD activity is rapidly regulated by short-term social encounters during the non-breeding season. A 30 min social challenge increased aggressive behavior. Without exogenous NAD⁺, there was ~355% increase in 3β-HSD activity in the caudal telencephalon and ~615% increase in the medial central telencephalon compared to controls (p<0.05). With exogenous NAD⁺, there was no effect of social challenge on 3β-HSD activity. These data suggest that endogenous cofactors play a critical role in the neuroendocrine response to social challenges. The increase in brain DHEA conversion to AE during social challenges may be a mechanism to rapidly increase local androgens in the non-breeding season, when there are many costs of systemic T.
3

Rapid social regulation of 3β-HSD activity in the songbird brain

Pradhan, Devaleena S. 11 1900 (has links)
Rapid increases in plasma androgens are generally associated with short-term aggressive challenges in many breeding vertebrates. However, some animals such as song sparrows (Melospiza melodia) are aggressive year-round, even during the non-breeding season, when gonads are regressed and systemic testosterone (T) levels are non-detectable. In contrast, levels of the prohormone dehydroepiandrosterone (DHEA) are elevated year-round in the plasma and brain. The local conversion of brain DHEA to potent androgens may be critical in regulating non-breeding aggression. 3β-hydroxysteroid dehydrogenase/Δ4-Δ5 isomerase (3β-HSD) catalyzes DHEA conversion to androstenedione (AE) and the cofactor NAD⁺ assists in this transformation. In this thesis, I asked whether brain 3β-HSD activity is regulated by social encounters in seasonally breeding male songbirds. In Experiment 1, I looked at the long-term seasonal regulation of brain 3β-HSD activity. 3β-HSD activity was highest in the non-breeding season compared to the breeding season and molt. In Experiment 2, I hypothesized that brain 3β-HSD activity is rapidly regulated by short-term social encounters during the non-breeding season. A 30 min social challenge increased aggressive behavior. Without exogenous NAD⁺, there was ~355% increase in 3β-HSD activity in the caudal telencephalon and ~615% increase in the medial central telencephalon compared to controls (p<0.05). With exogenous NAD⁺, there was no effect of social challenge on 3β-HSD activity. These data suggest that endogenous cofactors play a critical role in the neuroendocrine response to social challenges. The increase in brain DHEA conversion to AE during social challenges may be a mechanism to rapidly increase local androgens in the non-breeding season, when there are many costs of systemic T. / Science, Faculty of / Zoology, Department of / Graduate

Page generated in 0.1262 seconds