• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 463
  • 312
  • 159
  • 14
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • 9
  • 6
  • 3
  • 3
  • 3
  • Tagged with
  • 1129
  • 1129
  • 330
  • 326
  • 324
  • 255
  • 214
  • 161
  • 159
  • 148
  • 144
  • 120
  • 106
  • 105
  • 91
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Heat distribution by natural convection : a modelling procedure for enclosed spaces.

Ruberg, Kalev January 1979 (has links)
Thesis. 1979. M.Arch.--Massachusetts Institute of Technology. Dept. of Architecture. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ROTCH. / Bibliography: leaves 148-151. / M.Arch.
72

Analysis of the atmospheric water vapor transport and the hydrologic cycle simulated in a global circulation model

Chang, Jy-tai 15 June 1981 (has links)
In order to understand the atmospheric branch of the earth's hydrologic cycle on the global scale, an atmospheric moisture balance is diagnostically analyzed from the January and July data of the OSU atmospheric general circulation model, which has been integrated for thirty-nine months of simulation with seasonally-varying sea-surface temperature and solar insolation. The model hydrologic processes analyzed for the balance include the surface evaporation, the precipitation by large-scale and cumulus condensation, the vertical transport by large-scale and cumulus mass fluxes, and the horizontal transport of water vapor. The large-scale transports include the contributions from the standing and transient components of motion. Also analyzed are the potential and stream functions of horizontal transport, and the statistics of seasonal and interannual variabilities of the global and hemispheric effects of the hydrologic processes. As a result of these analyses, the hydrologic cycle is constructed and understood for both January and July of the model. Large-scale vertical transport moistens the upper layer; the standing and transient motions contribute mostly in the tropics and higher latitudes, respectively. Large-scale horizontal transport moistens the continental atmosphere except for the relatively small transport from the continents to the oceans by the standing motion in the upper layer; the runoff occurs in the model to balance the marine transport but seasonal trends exist such that snow assumulates during January and melts during July on the global average. Cumulus convection drys not only the lower layer but also the upper layer of the model, and the penetrating cumuli are a major mechanism of maritime precipitation, whereas the large-scale condensation and penetrating cumuli have the dominating effect on the continental precipitation during January and July, respectively. The seasonal precipitation over the Northern Hemisphere continents concurs with strong surface evaporation in summer and also with strong cyclonic activity in winter. Comparison with other models and observational data indicates that the model reproduced some basic features of the atmospheric branch of the hydrologic cycle and its seasonal variation. The intense evaporation (≥ 5 mm day⁻¹) over the Pacific and Atlantic oceans and the rain belts in the tropics are well simulated for both January and July. The poleward transport in the northern middle and high latitudes is in good agreement with observations. The maximum toward-thermal-equator transport in the tropics occurs, however, at the geographic equator for both January and July, indicating that these maxima are about 5 degrees of latitude closer to the seasonal thermal equator than the observed maxima. Nevertheless the global statistics of the model atmosphere are not significantly different from that of the real atmosphere. Among others, we mention the following common features of the January and July moisture balances in the present model. Most precipitation of penetrating convection occurs in regions of strong surface evaporation even though some occurs in the moisture convergence zones where most of heavy mid-level convection is located. In the regions of intense penetrating convection, however, the standing part of surface evaporation is much larger in magnitude than the negative transient part which is essentially due to the positive correlation between the turbulence intensity and surface humidity over wet surfaces. Moreover, the horizontal structure of the standing part conforms to that of the standing vapor pressure difference between the air and the underlying surface. A strategy for further studies is recommended on the basis of our understanding of these features. / Graduation date: 1982
73

Experimental analysis of a nonlinear moored structure

Narayanan, Suchithra 02 April 1999 (has links)
Graduation date: 1999
74

Coarse-grained modeling of concentrated protein solutions

Cheung, Jason Ka Jen 28 August 2008 (has links)
Not available / text
75

Nitrogen injection into naturally fractured reservoirs

Vicencio, Omar Alan 28 August 2008 (has links)
Not available / text
76

A block model for submarine slides involving hydroplaning

Hu, Hongrui, 1977- 28 August 2008 (has links)
This dissertation details the development of a block model for the movement of submarine slides with emphasis on possible hydroplaning. Unlike previous models, the block model simulated the mechanism of hydroplaning by monitoring the contact condition between the bottom surface of the slide mass and the underlying ground. The effect of hydroplaning on the movement of the slide mass is considered by changing the forces applied on the slide mass by the underlying ground according to the contact condition. The hydrodynamic stresses applied on the slide mass by the surrounding fluid are determined based on the numerical simulations of the flow around a sliding mass. The sliding process of the block is disretisized in a step-by-step manner using a Newmark scheme. A computer program is also written to implement the block model. The block model is validated by comparisons between the numerical results and data reported by Mohrig, et al (1999) for laboratory experiments on subaqueous slides. An illustrative study is also conducted using the block model for the movement of the sediment slabs during the Storegga Slide. The block model has successfully predicted the occurrence of hydroplaning and run-out distances of subaqueous slides. Numerical results with the block model supports the mechanism of hydroplaning for subaqueous slides with greater run-out distances than comparable subaerial slides.
77

Nitrogen injection into naturally fractured reservoirs

Vicencio, Omar Alan, 1966- 19 August 2011 (has links)
Not available / text
78

Development of a simulation model for PWR reactor coolant system

陳炳林, Chan, Ping-lam. January 1989 (has links)
published_or_final_version / Mechanical Engineering / Master / Master of Philosophy
79

An experimental investigation of the secondary electron formative time lag due to a pulse of primary electrons

Fordham, David Manuel January 1981 (has links)
No description available.
80

An investigation of computer-assisted stray radiation analysis programs

Fender, Janet Sue January 1981 (has links)
No description available.

Page generated in 0.1003 seconds