• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 7
  • 5
  • Tagged with
  • 24
  • 24
  • 7
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

SIMOO : plataforma orientada a objetos para simulação discreta multi-paradigma / SIMOO: object oriented environment for multi-paradigm event discrete simulation

Copstein, Bernardo January 1997 (has links)
Analisando-se a literatura de simulação discreta pode-se observar que os autores, em geral, constroem seus modelos de simulação baseados em abordagens tradicionais e aceitas tais como orientação a eventos, orientação a mensagens, orientação a filas, etc. Mais recentemente encontram-se ambientes que afirmam utilizar o chamado paradigma de simulação orientado a objetos. No entanto não existe consenso na definição de tal paradigma e diferentes interpretações podem ser encontradas. Considerando que um modelo de simulação pertence a classe dos sistemas de software, nada mais natural do que aplicar conceitos de orientação a objetos em seu desenvolvimento. Deve ficar claro, entretanto, que existe uma grande diferença entre um paradigma de simulação, isto é, as idéias e recursos usados na construção de um modelo, e um paradigma de projeto e implementação aplicado ao desenvolvimento de sistemas de simulação. Linguagens orientadas a objetos podem ser aplicadas na implementação de sistemas de simulação que utilizam conceitos de modelagem distintos. Ainda que todos possam ser chamados de sistemas orientados a objetos, pode haver confusão quanto ao significado do termo simulação orientada a objetos. Este trabalho apresenta um esquema original de classificação para sistemas de simulação quanto a sua arquitetura de software onde são considerados aspectos tais como a maneira pela qual as entidades do modelo se comunicam e a forma pela qual se descrevem os eventos que alteram seu estado, entre outros. Conceitos fundamentais são identificados de maneira a definir um modelo de referencia onde diferentes paradigmas de simulação possam ser caracterizados e classificados. Especial atenção e dada ao relacionamento entre os paradigmas de simulação e a orientação a objetos, onde esta Ultima e vista como uma estratégia de projeto e implementação. Uma nova forma de caracterizar um paradigma de simulação e proposta. SIMOO e um "framework. ' para simulação discreta orientada a objetos que foi construído de maneira a poder validar os conceitos propostos. Composto por uma biblioteca de classes e de uma ferramenta de edição de modelos, a principal vantagem do use de SIMOO em relação a outras abordagens esta no fato de que SIMOO permite a seleção do paradigma mais adequado a descrição de cada entidade do modelo. Esta característica permite a criação de modelos que incorporam, simultaneamente, mais de um paradigma de simulação. A abstração básica da biblioteca de classes de SIMOO, a partir da qual são derivadas todas as entidades de um modelo, e o elemento autônomo. Este encapsula uma "thread" própria de execução e um sistema de comunicação por mensagens não tipadas que são a base de todos os paradigmas suportados por SIMOO. A ferramenta de edição de modelos de SIMOO e chamada de MET. MET utiliza um diagrama de classes hierárquico enriquecido com recursos adequados para a construção de modelos de simulação. Além do diagrama de classes, descreve-se também um diagrama de instâncias, onde as especificações genéricas do diagrama de classes são particularizadas. A partir da especificação dos diagramas e da descrição do comportamento das entidades, MET gera um modelo executável. Finalmente, SIMOO preocupa-se com a separação de domínios entre a descrição do modelo propriamente dito e os aspectos de visualização de resultados e interação com o usuário. Uma categoria especial de elementos autônomos chamados de monitores e provida para permitir essa separação. Além de apresentar o "framework" SIMOO em termos de especificação e implementação, este trabalho mostra aplicações através de situações exemplo e apresenta uma análise comparativa com outros ambientes descritos na literatura. / When one surveys the literature on discrete simulation. it will be noticed that, in general. authors build their simulation models usin g traditional approaches such as event-oriented. message-oriented, queue-oriented. etc. In more recent texts, frameworks can be found that allegedly use the so called object-oriented simulation paradigm. However, there is no generally accepted definition of such a paradigm. and various interpretations can be found. If we consider that a simulation system is an instance of the more general class of software systems, it is strai ghtforward to apply concepts of object orientation to develop simulation systems. Nonetheless. it is important to emphasize that there is a major difference between a simulation paradigm. i.e.. the principles and resources used to build the model, and a design and implementation paradi gm used to develop the simulation system. Object-oriented languages can be used to implement simulation systems that follow different paradigms. If we refer to all these systems as objectoriented systems, confusion about the exact meanin g of object-oriented simulation may occur. This work presents an original classification of simulation systems according to their software architectures, where different aspects are taken into account, such as the way the entities in the model communicate with each other, the way one describes events that modify the entities' state, and others. In this classification, we identify basic concepts that are used to define a reference model, with which different simulation paradigms may be characterized and classified. In particular, special attention to the relationship between simulation paradigms and object-orientation is given, the latter here being seen as a strategy to design and implement simulation systems. SIMOO is an object-oriented framework for discrete simulation. composed by a Class Library and a Model Editing Tool that has been built in order to validate the proposed concepts. The main advantage of SIMOO with respect to other frameworks is that it allows a selection of the most adequate paradigm to describe each entity in the model. As a consequence, we are able to create models that instantiate, simultaneously, more than one simulation paradigm. The basic element of the SIMOO class library, based on which the framework derives all the entities in the model, is the autonomous element. This autonomous element has its own execution thread and an untyped message-based communication system that constitute the basis of all the paradigms SIMOO supports. The SIMOO Model Editing Tool (MET) uses a hierarchical class diagram extended with resources needed to build simulation models. Along with the classe diagram, MET allows one to describe an instance diagram that details the more generic class diagram. From the diagrams and the description of the behavior of the entities, MET generates an executable model. The SIMOO framework also emphasizes the distinction between model description and aspects of visualization and user interaction. It provides a special category of autonomous elements, the monitors, that implements this separation. Besides presenting the formal specification and the implementation of the framework, in this work several examples of how to use the SIMOO are presented, along with a comparison with other existing frameworks.
12

SIMOO : plataforma orientada a objetos para simulação discreta multi-paradigma / SIMOO: object oriented environment for multi-paradigm event discrete simulation

Copstein, Bernardo January 1997 (has links)
Analisando-se a literatura de simulação discreta pode-se observar que os autores, em geral, constroem seus modelos de simulação baseados em abordagens tradicionais e aceitas tais como orientação a eventos, orientação a mensagens, orientação a filas, etc. Mais recentemente encontram-se ambientes que afirmam utilizar o chamado paradigma de simulação orientado a objetos. No entanto não existe consenso na definição de tal paradigma e diferentes interpretações podem ser encontradas. Considerando que um modelo de simulação pertence a classe dos sistemas de software, nada mais natural do que aplicar conceitos de orientação a objetos em seu desenvolvimento. Deve ficar claro, entretanto, que existe uma grande diferença entre um paradigma de simulação, isto é, as idéias e recursos usados na construção de um modelo, e um paradigma de projeto e implementação aplicado ao desenvolvimento de sistemas de simulação. Linguagens orientadas a objetos podem ser aplicadas na implementação de sistemas de simulação que utilizam conceitos de modelagem distintos. Ainda que todos possam ser chamados de sistemas orientados a objetos, pode haver confusão quanto ao significado do termo simulação orientada a objetos. Este trabalho apresenta um esquema original de classificação para sistemas de simulação quanto a sua arquitetura de software onde são considerados aspectos tais como a maneira pela qual as entidades do modelo se comunicam e a forma pela qual se descrevem os eventos que alteram seu estado, entre outros. Conceitos fundamentais são identificados de maneira a definir um modelo de referencia onde diferentes paradigmas de simulação possam ser caracterizados e classificados. Especial atenção e dada ao relacionamento entre os paradigmas de simulação e a orientação a objetos, onde esta Ultima e vista como uma estratégia de projeto e implementação. Uma nova forma de caracterizar um paradigma de simulação e proposta. SIMOO e um "framework. ' para simulação discreta orientada a objetos que foi construído de maneira a poder validar os conceitos propostos. Composto por uma biblioteca de classes e de uma ferramenta de edição de modelos, a principal vantagem do use de SIMOO em relação a outras abordagens esta no fato de que SIMOO permite a seleção do paradigma mais adequado a descrição de cada entidade do modelo. Esta característica permite a criação de modelos que incorporam, simultaneamente, mais de um paradigma de simulação. A abstração básica da biblioteca de classes de SIMOO, a partir da qual são derivadas todas as entidades de um modelo, e o elemento autônomo. Este encapsula uma "thread" própria de execução e um sistema de comunicação por mensagens não tipadas que são a base de todos os paradigmas suportados por SIMOO. A ferramenta de edição de modelos de SIMOO e chamada de MET. MET utiliza um diagrama de classes hierárquico enriquecido com recursos adequados para a construção de modelos de simulação. Além do diagrama de classes, descreve-se também um diagrama de instâncias, onde as especificações genéricas do diagrama de classes são particularizadas. A partir da especificação dos diagramas e da descrição do comportamento das entidades, MET gera um modelo executável. Finalmente, SIMOO preocupa-se com a separação de domínios entre a descrição do modelo propriamente dito e os aspectos de visualização de resultados e interação com o usuário. Uma categoria especial de elementos autônomos chamados de monitores e provida para permitir essa separação. Além de apresentar o "framework" SIMOO em termos de especificação e implementação, este trabalho mostra aplicações através de situações exemplo e apresenta uma análise comparativa com outros ambientes descritos na literatura. / When one surveys the literature on discrete simulation. it will be noticed that, in general. authors build their simulation models usin g traditional approaches such as event-oriented. message-oriented, queue-oriented. etc. In more recent texts, frameworks can be found that allegedly use the so called object-oriented simulation paradigm. However, there is no generally accepted definition of such a paradigm. and various interpretations can be found. If we consider that a simulation system is an instance of the more general class of software systems, it is strai ghtforward to apply concepts of object orientation to develop simulation systems. Nonetheless. it is important to emphasize that there is a major difference between a simulation paradigm. i.e.. the principles and resources used to build the model, and a design and implementation paradi gm used to develop the simulation system. Object-oriented languages can be used to implement simulation systems that follow different paradigms. If we refer to all these systems as objectoriented systems, confusion about the exact meanin g of object-oriented simulation may occur. This work presents an original classification of simulation systems according to their software architectures, where different aspects are taken into account, such as the way the entities in the model communicate with each other, the way one describes events that modify the entities' state, and others. In this classification, we identify basic concepts that are used to define a reference model, with which different simulation paradigms may be characterized and classified. In particular, special attention to the relationship between simulation paradigms and object-orientation is given, the latter here being seen as a strategy to design and implement simulation systems. SIMOO is an object-oriented framework for discrete simulation. composed by a Class Library and a Model Editing Tool that has been built in order to validate the proposed concepts. The main advantage of SIMOO with respect to other frameworks is that it allows a selection of the most adequate paradigm to describe each entity in the model. As a consequence, we are able to create models that instantiate, simultaneously, more than one simulation paradigm. The basic element of the SIMOO class library, based on which the framework derives all the entities in the model, is the autonomous element. This autonomous element has its own execution thread and an untyped message-based communication system that constitute the basis of all the paradigms SIMOO supports. The SIMOO Model Editing Tool (MET) uses a hierarchical class diagram extended with resources needed to build simulation models. Along with the classe diagram, MET allows one to describe an instance diagram that details the more generic class diagram. From the diagrams and the description of the behavior of the entities, MET generates an executable model. The SIMOO framework also emphasizes the distinction between model description and aspects of visualization and user interaction. It provides a special category of autonomous elements, the monitors, that implements this separation. Besides presenting the formal specification and the implementation of the framework, in this work several examples of how to use the SIMOO are presented, along with a comparison with other existing frameworks.
13

ASDA: um ambiente de simulação distribuída automático / ASDA: an automatic distributed simulation environment

Sarita Mazzini Bruschi 25 November 2002 (has links)
Esta tese propõe um ambiente automático para desenvolvimento de simulação distribuída ASDA (Ambiente de Simulação Distribuída Automático), que tem como objetivo principal facilitar a utilização e desenvolvimento de simulação distribuída. As funcionalidades definidas no ASDA tornam-o diferente de todos os outros ambientes encontrados na literatura. A especificação do ASDA foi realizada através de um diagrama modular composto por sete módulos e também com o auxílio da ferramenta UML (Unified Modelling Language), através da utilização de três de seus diagramas: de casos de uso, de classes e de atividades. O ASDA permite aos usuários a utilização de simulação distribuída através da definição de uma nova simulação ou da replicação de um programa de simulação já desenvolvido. Se a opção for pelo desenvolvimento de um novo programa de simulação, o usuário deve fornecer o modelo e os parâmetros e o ambiente se encarrega de gerar o código do programa de simulação utilizando a abordagem que proporciona o melhor desempenho, levando em consideração as características do modelo e da plataforma. Além da especificação do ASDA, esta tese definiu um protótipo do ambiente com o objetivo de mostrar sua viabilidade de utilização. Neste protótipo, três módulos foram implementados, destacando-se o módulo Replicador, que utiliza a abordagem MRIP (Multiple Replication in Parallel). Esta tese contribui também com a definição de algumas diretrizes para a utilização da abordagem MRIP. A base para essa definição foram os resultados obtidos com a utilização do módulo Replicador / This thesis proposes an automatic environment for the development of distributed simulation ASDA (Ambiente de Simulação Distribuída Automático (in Portuguese), whose main goal is to make easier the use and development of distributed simulation. The ASDA functionality makes it different from all other environments found in the literature. The ASDA has been specified through a modular diagram, composed of seven modules built with the help of the UML (Unified Modelling Language) tool, using three of its diagrams: use case, class and activity. ASDA users can define the distributed simulation by means of the specification of a new simulation program or the replication of a simulation program already developed. If the user chooses to develop a new simulation program, he must only provide the model and the parameters. The environment will then generate the simulation program code using the approach that provides the best performance considering the model and platform characteristics. Besides the specification, this thesis presents a prototype of the ASDA environment with the goal of showing its viability. Three modules have been implemented for the prototype, highlighting the Replication module, which uses the MRIP (Multiple Replication in Parallel) approach. Another contribution of this thesis is the definition of a set of guidelines to the utilization of the MRIP approach. The basis to define these procedures was the results obtained with the utilization of the Replication module
14

Simulační prostředí standardu IEC 61850 / IEC 61850 simulation environment

Rusz, Lukáš January 2020 (has links)
The work deals with communication protocols of the IEC 61850 standard. The protocols GOOSE (Generic Object Oriented Substation Events), SMV (Sampled Measured Values) and MMS (Manufacturing Message Specification) are described. The protocols are used to create a simulation network, which is described in this work. The simulation network is created in the OMNeT ++, program installed in the Ubuntu virtual environment.
15

Navigace mobilního robotu pomocí fuzzy logiky / Mobile robot navigation by means of fuzzy logic

Janovec, Aleš January 2010 (has links)
In the introductory part of this thesis there is an analysis of methods, which are used for navigation of mobile robots. The main part of the thesis contains a proposal of control system of mobile robot. Robot control system is based on fuzzy modeling. To test the control, a system simulation environment is created in C #, in which experiments were performed.
16

MUSE: A parallel Agent-based Simulation Environment

Gebre, Meseret Redae 31 July 2009 (has links)
No description available.
17

Programmable logic controller emulator enhancements to facilitate a distributed manufacturing simulation environment

Kunnamareddi, Sadhishkumar January 2001 (has links)
No description available.
18

Virtual Sensor System: Merging the Real World with a Simulation Environment

Vernier, Michael Anthony 29 October 2010 (has links)
No description available.
19

Muse a parallel agent-based simulation environment /

Gebre, Meseret Redae. January 2009 (has links)
Thesis (M.C.S.)--Miami University, Dept. of Computer Science and Systems Analysis, 2009. / Title from first page of PDF document. Includes bibliographical references (p. 72-75).
20

The hygrothermal inertia of massive timber connstructions

Hameury, Stéphane January 2006 (has links)
The work presented in this Doctoral dissertation concerns the ability of heavy timber structures to passively reduce the fluctuations of the indoor temperature and of the indoor relative humidity, through the dynamic process of heat and moisture storage in wood. We make the hypothesis that the potential offered by the hygrothermal inertia of heavy timber structures is significant, and that it could provide a passive way of regulating the indoor climate. This ultimately could results in a decrease of the energy demand from the Heating, Ventilating and Air Conditioning systems. In this Thesis, the author tries to characterise and quantify the significance of the hygrothermal inertia providing by the heavy timber constructions. The experimental studies contain an in-situ measurement campaign carried out at the Vetenskapsstaden building located in Stockholm and erected in 2001. The results from the test campaign show that a heavy timber construction may contribute to buffer the indoor temperature. A direct quantification of the moisture stored in the wood structure is measured regarding the year-to-year indoor humidity fluctuations. It was however hardly possible to directly quantify the moisture storage potential offered by the structure regarding the day-to-day indoor relative humidity fluctuations because of the low sensitivity of the measuring technique used. In regard to the limitations noticed during the in-situ measurements, laboratory measurements were launched to develop new methods to determine the day-to-day hygric performances of wood exposed indoor. A new method based on the Magnetic Resonance Imaging technology was developed and is intended to provide information about the Moisture Buffer Value measured according to a NORDTEST protocol, and about the moisture distribution in wood with high spatial resolution. The Moisture Buffer Value of untreated Scots pine measured with this method is in accordance with the gravimetric method provided by the NORDTEST protocol. The Moisture Buffer Value of coated Scots pine was also investigated and it is normally assumed that any coatings will decrease the Moisture Buffering Capacity of the structure. The results show however that for specific coating such as waterborne alkali silicate coating, the Moisture Buffering Capacity of the structure may on the contrary be improved. At last, numerical simulations were carried out. They were based upon the extension of a modular simulation environment IDA ICE 3.0, with the implementation of a specific model for heat and moisture transport in a wood. The results obtained pinpoint the highly synergetic effects between the indoor moisture loads, the ventilation rate, the outdoor climate and the moisture interactions with the structure. The outcomes also show that the Moisture Buffering Capacity of a heavy timber structure is appreciable. The structure is able to even out substantially the day-to-day indoor relative humidity fluctuations for a certain range of ventilation rate. / QC 20100825

Page generated in 0.1208 seconds