Spelling suggestions: "subject:"desimulations discrète"" "subject:"desimulations concrètes""
1 |
Modélisation du comportement mécanique et thermique des silices nano-architecturées / Simulation of mechanical behavior of nanostructured silica based insulation panelsGuesnet, Étienne 05 November 2018 (has links)
Les silices nanostructurées sont des matériaux ultra-poreux (plus de 80% de porosité) utilisés pour la confection de Panneaux Isolants sous Vides (PIV). Elles possèdent des propriétés thermiques exceptionnelles, mais de piètres propriétés mécaniques.L’enjeu de cette thèse est d’étudier ces matériaux aux échelles de la particule (quelques nm), de l’agrégat de particules (quelques dizaines de nm) et de l’agglomérat d’agrégats (quelques centaines de nm), afin de mieux comprendre les comportements mécanique et thermique à l’aide de simulations, et de proposer des pistes pour améliorer le compromis thermique / mécanique. La nature particulaire du matériau et son caractère multi-échelle justifient l’utilisation de méthodes de simulations discrètes (DEM : Discrete Element Method). Un modèle original permettant de générer des agrégats à morphologiecontrôlée (dimension fractale, rayon de giration, porosité) est proposé. Le comportement à la compaction des agrégats est ensuite étudié par simulations DEM. Une approche par cyclage à faible densité a été développée pour obtenir des arrangements initiaux réalistes d’agrégats. La prépondérance des phénomènes adhésifs dans le système rend en effet celui-ci très sensible à l’arrangement initial. La réponse en traction des structures générées par compaction est également évaluée.L’influence de la morphologie des agrégats, de l’adhésion et du frottement ont été étudiées. L’accent est mis sur la comparaison de deux types de silices (pyrogénées et précipitées) présentant des morphologies différentes et pour lesquelles des données expérimentales permettent une confrontation avec les simulations. Les simulations présentées permettent d’apporter des réponses sur l’origine des différences de comportement mécanique observées expérimentalement pour ces deux types de silice.Une modélisation de la conductivité thermique du matériau, avec une focalisation sur la conductivité solide, est également proposée. / Nanostructured silicas are ultra-porous materials (more than 80 % porosity) used to make Vacuum Insulation Panels (VIP).They have exceptional thermal properties, but poor mechanical properties. The goal of this thesis is to study these materials at the scale of the particle (a few nm), the aggregate of particles (a few tens of nm) and the agglomerate of aggregates (a few hundred nm), in order to better understand mechanical and thermal behaviour using simulations, and to propose ways to improve the thermal / mechanical compromise. The particulate nature of the material and its multi-scale naturejustify the use of Discrete Element Methods (DEM). An original model allowing to generate aggregates with controlledmorphology (fractal dimension, radius of gyration, porosity) is proposed. The compaction behaviour of the aggregates is then studied by DEM. A low-density cycling approach has been developed to obtain realistic initial aggregate arrangements.The preponderance of adhesive phenomena in the system makes it very sensitive to the initial arrangement. The tensile response of structures generated by compaction is also evaluated. The influence of aggregate morphology, adhesion and friction were studied. Emphasis is placed on the comparison of two types of silica (pyrogenic and precipitated) with different morphologies and for which experimental data allow a comparison with simulations. The simulations presented allow us to provide answers on the origin of the differences in mechanical behaviour observed experimentally for these two types of silica.A modeling of the thermal conductivity of the material, with a focus on solid conductivity, is also proposed.
|
2 |
Investigation of pore closure during polar firn densification / Etude de la fermeture des pores lors de la densification du névé polaireBurr, Alexis 29 November 2017 (has links)
.La densification du névé en glace est un processus essentiel à comprendre pour interpréter les enregistrements climatiques. Une bonne connaissance des mécanismes permet une datation précise de l'air capturé dans la glace lors de la fermeture des pores. Celle-ci est plus vieille que l'air capturé à cause du transport des gaz dans la colonne de névé plus rapide que la densification de celui-ci. Cette différence d'âge entre la glace et le gaz est généralement appelé le Δage. La densification de la neige consiste en un processus complexe de réarrangement de grains, de frittage et de déformation viscoplastique. Bien que le comportement viscoplastique du cristal de glace soit fortement anisotrope, les modèles de densification actuels ne tiennent pas compte de cette anisotropie. De plus, le caractère granulaire du névé affecte aussi sa densification. La relation entre la fermeture des pores et les mécanismes microstructuraux sous-jacents est encore méconnue. Le but de cette thèse est d'incorporer l'aspect granulaire ainsi que l'anisotropie du cristal de glace dans une approche de modélisation innovante de la densification. Des expériences sur l'indentation viscoplastique de cylindres monocristallins de glace ont été réalisées pour proposer une loi de contact basée sur la théorie de l'indentation, et prenant en compte la déformation préférentielle du cristal de glace sur les plans basaux. Cette loi de contact a été implémentée dans un code utilisant la méthode des éléments discrets pour prédire la densification du névé.La micro-tomographie aux rayons X a été utilisée pour caractériser ex situ le névé polaire en trois dimensions à différentes étapes de la densification (ρ= 0.55-0.88 g/cm3), i.e. pour différentes profondeurs (~23 à 130m). Une étude fine de la fermeture des pores et de différentes caractéristiques morphologiques et physiques a été réalisée pour les sites polaires Dome C et Lock In. Des essais mécaniques ont aussi été réalisés in situ sur du névé extrait de Dome C dans le but de modéliser la densification du névé. Les observations microstructurales des expériences ex situ et in situ révèlent d'importantes différences dues aux vitesses relativement importantes utilisées lors des essais mécaniques. Ces vitesses rapides permettent de découpler la contribution des cinétiques de diffusion de la contribution viscoplastique de la déformation. Les effets de ces contributions sur la morphologie des pores et leurs fermetures sont discutés. Pour caractériser la fermeture des pores, cette thèse propose un indice de connectivité définit par le ratio entre le volume du plus gros pore sur la porosité totale. En effet, cet indice est plus approprié lors de l'utilisation de la tomographie aux rayons X que le ratio de pores fermés pour prédire la densité au close-off. / Densification from firn to ice is an essential phenomenon to understand for the interpretation of the climate record. A good knowledge of this mechanism enables the precise dating of the air embedded in the ice. The step at which the air becomes entrapped is the pore closure (or close-off). Because of gas flow in the firn column, the ice is older than the entrapped air. The difference between ice and gas is generally defined as Δage.Snow densification consists of grain rearrangements, sintering and viscoplastic deformation. Although the viscoplastic behaviour of the ice crystal is strongly anisotropic, densification models do not take into account this anisotropy. Firn also bears some granular characteristics that may affect its densification. The interactions between pore closure and microstructural mechanisms in the firn are still misunderstood.The aim of this PhD thesis is to incorporate both the granular aspect of firn and its anisotropy into an innovating approach of firn densification modelling. The mutual indentation of viscoplastic monocrystalline ice cylinders was experimentally carried out to propose a contact law that is based on indentation theory and that takes into account the preferential viscoplastic deformation on the basal plane. We have integrated this contact law into a DEM (Discrete Element Method) code for the prediction of firn densification.3D X-ray micro-tomography was performed on polar firn at different stages of the densification (ρ= 0.55-0.88 g/cm3) and depths (~23 to 130m). A thorough investigation of pore closure and of different morphological and physical parameters was achieved for the Dome C and the newly drilled Lock In polar sites. In addition to these ex situ analyses, in situ X-ray micro-mechanical experiments were carried out on firn extracted from Dome C in order to model its densification. Ex situ and in situ microstructural observations indicate significant differences that can be explained by the relatively large strain-rates imposed to the firn during in situ tests. These large strain rates allow for a decoupling of the effects of diffusion kinetics and of viscoplastic deformation. Their relative weights on the morphology of pores and on their closure are discussed. To measure pore closure, we propose a connectivity index, which is the ratio of the largest pore volume over the total pore volume. We show that this index is better suited for X-ray tomography analysis than the classic closed porosity ratio to predict the close-off density
|
3 |
Optimisation d’architecture d’électrode poreuse pour pile à combustible à oxyde solide / Optimal microstructure architecture design of porous electrodes for solid oxide fuel cellsRoussel, Denis 29 January 2015 (has links)
Ce projet se place dans le cadre du développement des nouvelles technologies de l'énergie respectueuses de l'environnement. Les piles à combustibles à oxydes solides (SOFC) permettent, pour les applications stationnaires, la génération de puissance de 1kW à 2MW avec un rendement électrique pouvant atteindre 70%. Elles fonctionnent à très hautes températures, typiquement entre 700-1000°C. La cellule d'une SOFC est constituée d'un électrolyte dense pris en sandwich entre deux électrodes poreuses (anode et cathode). Les électrodes poreuses, élaborées à partir de poudres céramiques, représentent un élément critique de l'assemblage. En effet, elles doivent être suffisamment poreuses pour optimiser à la fois la diffusion des gaz et les réactions électrochimiques. Cette nécessité est en contradiction avec l'exigence d'une bonne tenue mécanique. Cette contradiction doit pouvoir être résolue en proposant des microstructures d'électrodes poreuses hiérarchisées ou anisotropes. L'objectif de cette thèse est de montrer différentes voies possibles pour optimiser l'électrode en s'appuyant en particulier sur des simulations numériques et sur des caractérisations tomographiques. Les électrodes sont élaborées en utilisant deux protocoles différents conduisant à des porosités isotropes et anisotropes. Les échantillons anisotropes sont préparés en utilisant la méthode de moulage par congélation à partir de poudres YSZ/LSM, typiques de matériaux d'électrode. Cette méthode de fabrication conduit à une porosité hiérarchisée. La porosité totale est définie par le taux de chargement dans la barbotine initiale. La microporosité diminue avec la température de frittage et la taille des macropores est fonction de la vitesse de solidification. Les échantillons isotropes sont préparés en utilisant des agents porogènes avec des caractéristiques identiques aux échantillons anisotropes. Ces électrodes sont caractérisées par la technique d'Archimède pour déterminer les taux de porosités (macro et micro) et par microscopie à balayage pour connaître la taille des macroporosités. Des images tridimensionnelles des microstructures sont obtenues par FIB-SEM (Focused Ion Beam, 15µm³) et par nanotomographie-X (75µm³), avec des résolutions de 10nm et 75nm, respectivement. Le rendement énergétique d'une électrode dépend de différents paramètres : composition YSZ/LSM, taux de porosité, taille des particules, conductivités électronique/ionique et résistance électrochimique. Ces paramètres sont étudiés en utilisant des microstructures numériques associées à un réseau de résistance. Les simulations permettent de déterminer les facteurs qui contrôlent la conductivité effective. Ces microstructures numériques sont élaborées à l'échelle de la taille des particules en utilisant le code dp3D basé sur la méthode des éléments discrets (DEM) et développé au sein du laboratoire SIMaP. Nous montrons par exemple qu'en dessous d'une certaine épaisseur, la composition YSZ/LSM a très peu d'influence sur la conductivité effective. Une méthode a également été développée pour calculer cette conductivité effective à partir d'une image de FIB prenant en compte la résistance électrochimique aux points triples (gaz, YSZ, LSM). La tenue mécanique des différentes microstructures est testée en compression jusqu'à la rupture. En parallèle, des calculs sur image, couplés à la DEM sont effectués pour simuler les propriétés mécaniques. Nous comparons le comportement des microstructures homogènes (obtenues avec des agents porogènes) et celui des microstructures anisotropes. Les modules et les contraintes à rupture sont surestimés par les simulations. Qualitativement, les résultats expérimentaux et de simulation montrent des mécanismes de rupture cohérents entre eux. Par ailleurs, les modules et les contraintes à rupture sont différents entre les deux types d'échantillon (anisotrope et isotrope). Cette anisotropie peut être utilisée pour optimiser les propriétés mécaniques suivant une direction. / This project is involved in the development of new green power sources. Solid Oxide Fuel Cells (SOFCs) can achieve an output power of 1kW to 2MW and an energy conversion of up to 70%. Temperatures between 700 and 1000°C are required. A typical cell is made of an electrolyte sandwiched between two porous electrodes (anode and cathode). Porous electrodes are elaborated from ceramic powders and are critical components of the whole structure. These electrodes need to be porous enough to optimize gaz diffusion and electrochemical reactions. This requirement is antagonist to the need of a good mechanical strength. This conflict could be solved using hierarchical or anisotropic electrode microstructures. The aim of this thesis is to investigate possible ways to optimize an electrode. Numerical simulations and nanotomography characterizations are used for this purpose. Electrodes are elaborated using two different protocoles leading to anisotropic and isotropic porosities. Anisotropic samples are prepared by freeze-casting from a slurry of YSZ and LSM, which are typical materials for SOFCs. Freze-casting leads to a hierarchical porosity. The overall porosity is controlled by the loading of the slurry. The microporosity decreases with sintering temperature and the macropore size is function of the freezing rate. Isotropic samples are processed using pore formers. The size and the amount of pore formers are selected to match the characteristics of the anisotropic samples. These electrodes are characterized with Archimedes technique to determine the porosity, and with scanning electron microscope (SEM) to obtain the size of macropores. Three dimensional images of the microstructures are captured using focused ion beam (FIB-SEM tomography) technique (10nm} resolution) and using X-ray nanotomography (75nm} resolution). The overpotentials in an electrode depend on different parameters: composition of YSZ/LSM, porosity, particle sizes, electronic/ionic conductivities and electrochemical resistance. These parameters are studied on numerical microstructures coupled with a resistor network. These numerical microstructures have been generated at th scale of particles, using a numerical code based on the discrete element method (DEM). Simulations can be used to determine the limiting factor on the effective conductivity. For example, we show that the composition of YSZ/LSM in a sample matters little for electrodes below a certain thickness. A new method has also been developed to compute the effective conductivity from a FIB-SEM image taking into account the electrochemical resistance at the triple point boundaries between gaz, YSZ and LSM. The mechanical response of the elaborated microstructures are tested in compression up to the fracture. In parallel, DEM simulations are performed to simulate mechanical properties based on 3D images. The mechanical behaviours of homogeneous samples (with pore formers) and anisotropic samples are compared. The yield strength and stiffness are overestimated by simulations. Qualitatively, experimental results and simulations show consistent failure mecanisms. Moreover, the yield strength and stiffness are different in the two types of sample (anisotropic and isotropic). Such an anisotropy could be used to optimize mechanical properties in one direction.
|
Page generated in 0.1217 seconds