• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental High Cycle Fatigue Testing and Shape Optimization of Turbine Blades

Ahmadi Tafti, Mohamad 20 November 2013 (has links)
An accelerated high cycle fatigue testing approach is presented to determine the fatigue endurance limit of materials at high frequencies. Base excitation of a tapered plaque driven into a high frequency resonance mode allows the test to be completed in a significantly shorter time. This high cycle fatigue testing is performed using the tracked sine resonance search and dwell strategy. The controller monitors the structural health during the test. Any change in the dynamic response indicates crack initiation in the material. In addition, a shape optimization finite element model is conducted for the design of the tapered plaques. An integrated neural (Neural-Network) genetic (NSGA_II) optimization technique is implemented to carry out the shape optimization for this component. This process results in a significant reduction in the computational cost. A Pareto set is then produced that meets the designer’s requirements and provides the decision maker several alternatives to choose from.
2

Experimental High Cycle Fatigue Testing and Shape Optimization of Turbine Blades

Ahmadi Tafti, Mohamad 20 November 2013 (has links)
An accelerated high cycle fatigue testing approach is presented to determine the fatigue endurance limit of materials at high frequencies. Base excitation of a tapered plaque driven into a high frequency resonance mode allows the test to be completed in a significantly shorter time. This high cycle fatigue testing is performed using the tracked sine resonance search and dwell strategy. The controller monitors the structural health during the test. Any change in the dynamic response indicates crack initiation in the material. In addition, a shape optimization finite element model is conducted for the design of the tapered plaques. An integrated neural (Neural-Network) genetic (NSGA_II) optimization technique is implemented to carry out the shape optimization for this component. This process results in a significant reduction in the computational cost. A Pareto set is then produced that meets the designer’s requirements and provides the decision maker several alternatives to choose from.

Page generated in 0.0707 seconds