• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Seasonality and sources of light-absorbing aerosols at Summit, Greenland

Hu, Jason 21 September 2015 (has links)
The Greenland ice sheet (GIS) is a key component of the warming Arctic climate, having the potential to dramatically influence sea level through melting. Light-absorbing aerosols are thought to be significant contributors to warming in the Arctic, because of their effect on the radiation balance through both aerosol absorption in the atmosphere as well as absorption in surface snow after particulate deposition. At this time it is not possible to estimate the impact of aerosol absorption on the radiation balance over Greenland due to the lack of in-situ measurements. Here, we present time series and estimates of key aerosol optical properties in order to better understand the seasonality and sources of aerosols over central Greenland, and compare their values with other Arctic sites. In-situ measurements made at Summit, Greenland from May 8, 2011 to December 31, 2014 include aerosol light absorption coefficient (σap) and light scattering coefficient (σsp); calculated parameters include absorption Ångström exponent (AAE), and single scattering albedo (ωo). The light absorption and scattering coefficients were found to be low in the winter and highest in the spring and summer. Spring-summer means of σap and σsp were 0.15 ± 0.15 Mm-1 and 2.35 ± 2.80 Mm-1, respectively. Mean AAE was 0.97 ± 0.29 in the spring and summer, indicating that black carbon (BC), and not dust and/or organic brown carbon (BrC), is the main aerosol light absorber. Mean ωo was 0.93 ± 0.03, which is similar to values measured at Barrow, Alaska, USA (0.94 ± 0.05) and Ny-Ålesund, Svalbard, Norway (0.95 ± 0.06). Summit exhibits ωo as low as Barrow and Ny-Ålesund although it is an isolated high-altitude site indicating the importance of aerosol light absorption over the most remote Arctic locations.
2

Investigation of Optical Properties of Size-Selected Black Carbon Under Controlled Laboratory Conditions

Lei, Ziying January 2016 (has links)
No description available.
3

Investigation Of Aerosol Characteristics Over Inland, Coastal And Island Locations In India

Vinoj, V 05 1900 (has links)
This thesis is based on measurements of aerosol optical and microphysical properties made at inland, coastal and island locations in India. Aerosol vertical distribution measurements have also been made both using surface based and aircraft borne instruments. In addition to these, satellite based measurements (MODIS and OMI) have also been used to estimate regional aerosol radiative forcing over the oceanic regions around India. The measurements at an inland, continental, urban location reveals the large effect of anthropogenic activities on aerosol characteristics at surface and the atmospheric vertical column. A clear seasonality is observed in aerosol optical and microphysical properties as a consequence of modulation by anthropogenic activities and the effect of meteorological parameters like rainfall, winds and boundary layer dynamics. The variability observed at different time scales (from diurnal, weekly, monthly to annual) reveals the importance of anthropogenic and natural processes in modulating the aerosol loading. The estimates of aerosol radiative forcing at surface were as high as ~ 40W m-2. A large discrepancy was observed between the observed and modeled aerosol forcing efficiency (forcing per unit optical depth) at surface. These discrepancies are due to the inadequate representation of aerosol mixing state in models. In addition, the large difference found in the observed forcing between winter and summer could also be influenced due to the presence of elevated aerosols during the summer. Measurements made over coastal and central India shows that a large fraction (75-85%) of aerosol column optical depth was contributed by aerosols located above 1 km. The horizontal gradients were sharp with e-1 scaling distance as small as ~250 km in the well-mixed regions mostly under the influence of local source effects. However, above the atmospheric boundary layer, the gradients were much shallower (~800 to 1200 km). In addition, a large fraction (60-75%) of aerosol was found located above clouds leading to enhanced aerosol absorption. Large spatial gradient in aerosol optical depth and hence radiative impacts between the coastal landmass and the adjacent oceans within a short distance of <300 km (even at an altitude of 3 km) during summer and pre-monsoon is of importance to regional climate. Observations at Minicoy, a remote island in southern Arabian Sea to study the characteristics of transported aerosols reveals variability at daily, weekly, monthly and seasonal time scales associated with changes in precipitation and air mass characteristics. The daily mean Black Carbon (BC) mass mixing ratio varied between as low as ~ 0.2 to 9.0%. The resultant average aerosol atmospheric forcing for the observation period was ~15 W m-2. Trajectory based cluster analysis has shown six distinct advection/transport pathways influencing aerosol characteristics over southern Arabian Sea. The Indo-Gangetic Plain, northern Arabian Sea and west Asia are identified to be the most important source regions having a major impact on aerosols loading over the southern Arabian Sea. The cluster analysis, concentration weighted trajectory (CWT) analysis and the MODIS retrievals show an asymmetry in aerosol characteristics between the Arabian Sea and the Bay of Bengal, with the Arabian Sea characterized by large loading by natural aerosols (eg., dust and sea salt) and the Bay of Bengal characterized by anthropogenic loading (eg., BC). The low value of the BC mass mixing ratio measured at the island (mostly ~ 1 to 1.6%), has major implications for regional radiative forcing. The annually averaged net aerosol atmospheric forcing was as low as ~1.7 W m-2 with highest forcing corresponding to IGP cluster. The single scattering albedo (SSA) which is an important parameter in the estimation of aerosol radiative forcing was retrieved by utilizing a joint OMI-MODIS retrieval methodology. The SSA over the oceanic regions around India shows that the largest absorption (SSA < 0.9) occurs during winter. The largest gradients in AOD and SSA were observed over Arabian Sea during the summer as a result of large dust emissions. The largest forcing observed also was confined to the northern Arabian Sea (~ 37 W m-2) as a result of high aerosol column loading and dust transport. The observed annual mean forcing at Minicoy were comparable to that estimated using satellite measurements, but were much lower than those observed during INDOEX.
4

The Retrieval of Aerosols above Clouds and their Radiative Impact in Tropical Oceans

Eswaran, Kruthika January 2016 (has links) (PDF)
Aerosols affect the global radiation budget which plays an important role in determining the state of the Earth's climate. The heterogeneous distribution of aerosols and the variety in their properties results in high uncertainty in the understanding of aerosols. Aerosols affect the radiation by scattering and absorption (direct effect) or by modifying the cloud properties which in turn affects the radiation (indirect effect). The current work focuses only on the direct radiative effect of aerosols. The change in the top-of-atmosphere (TOA) reflected flux due to the perturbation of aerosols and their properties is called direct aerosol radiative forcing (ARFTOA). Estimation of ARFTOA using aerosol properties is done by solving the radiative transfer equation using a radiative transfer model. However, before using the radiative transfer model, it has to be validated with observations for consistency. This is done to check if the model is able to replicate values close to actual observations. The current work uses the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model. The output radiative fluxes from SBDART are validated by comparing with the Clouds and the Earth's Radiant Energy System (CERES) satellite data. Under clear-skies SBDART agreed with observed fluxes at TOA well within the error limits of satellite observations. In the shortwave solar spectrum (0.25-4 µm) radiation is affected by change in various aerosol properties and also by water vapour and other gas molecules. To study the effect of each of these molecules separately on the aerosol forcing at TOA, SBDART is used. ARFTOA is found to depend on the aerosol loading (aerosol optical depth – AOD), aerosol type (SSA) and the angular distribution of scattered radiation (asymmetry parameter). The role of water vapour relative to the aerosol layer height was also investigated and for different aerosol types and aerosol layer heights, it was found that water vapour can induce a change of ~4 Wm-2 in TOA flux. The relative importance of aerosol scattering versus absorption is evaluated through a parameter called single scattering albedo (SSA) which can be estimated from satellites. SSA defined as the ratio of scattering efficiency to total extinction efficiency, depends on the aerosol composition and wavelength. Aerosols with SSA close to 1 (sea-salt, sulphates) scatter the radiation and cool the atmosphere. Aerosols with SSA < 0.9 (black carbon, dust) absorb radiation and warm the atmosphere. Over high reflective surfaces a small change in SSA can change forcing from negative (cooling) to positive (warming). This makes SSA one of the most important and uncertain aerosol parameters. Currently, the SSA retrievals from the Ozone Monitoring Instrument (OMI) are highly sensitive to sub-pixel cloud contamination and change in aerosol height. Using the sensitivity of OMI to aerosol absorption and the superior cloud masking technique and accurate AOD retrieval of Moderate Resolution Imaging Spectroradiometer (MODIS), an algorithm to retrieve SSA (OMI-MODIS) was developed. The algorithm was performed over global oceans (60S-60N) from 2008-2012. The difference in SSA estimated by OMI-MODIS and that of OMI depended on the aerosol type and aerosol layer height. Aerosol layer height plays an important role in the UV spectrum due to the dominance of Rayleigh scattering. This was verified using SBDART which otherwise would not have been possible using just satellite observations. Both the algorithms were validated with cruise measurements over Arabian Sea and Bay of Bengal. It was seen that when absorbing aerosols (low SSA values) were present closer to the surface, OMI overestimated the value of SSA. On the other hand OMI-MODIS algorithm, which made no assumption on the aerosol type or height, was better constrained than OMI and hence was closer to the cruise measurement The presence of clouds results in a more complex interaction between aerosols and radiation. Aerosols present above clouds are responsible to most of the direct radiative effect in cloudy regions. The ARFTOA depends not only on the aerosol properties but also on the relative position of aerosols with clouds. When absorbing aerosols are present above clouds, the ARFTOA is highly influenced by the albedo of the underlying surface. Recent studies, over regions influenced by biomass burning aerosol, have shown that it is possible to define a ‘critical cloud fraction’ (CCF) at which the aerosol direct radiative forcing switch from a cooling to a warming effect. Similar analysis was done over BoB (6.5-21.5N; 82.5-97.5E) for the years 2008-2011. Aerosol properties were taken from satellite observations. Satellites cannot provide for aerosols present at different heights and hence SBDART was used to calculate the forcing due to aerosols present only above clouds. Unlike previous studies which reported a single value of CCF, over BoB it was found that CCF varied from 0.28 to 0.13 from post-monsoon to winter as a result of shift from less absorbing to moderately absorbing aerosol. This implies that in winter, the absorbing aerosols present above clouds cause warming of the atmosphere even at low cloud fractions leading to lower CCF. The use of multiple satellites in improving the retrieval of SSA has been presented in this thesis. The effect of aerosols present above clouds on the radiative forcing at TOA is shown to be different between Bay of Bengal and Atlantic Ocean. This was due to the change in SSA of aerosols during different seasons. The effect of aerosol height, aerosol type and water vapour on the TOA flux estimation is also studied using a radiative transfer model.

Page generated in 0.1107 seconds