• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A microflow cytometer with simultaneous dielectrophoretic actuation for the optical assay and capacitive cytometry of individual fluid suspended bioparticles

Romanuik, Sean 14 September 2009 (has links)
Fluid suspended biological particles (bioparticles) flowing through a non-uniform electric field are actuated by the induced dielectrophoretic (DEP) force, known to be dependent upon the bioparticles’ dielectric phenotypes. In this work: a 10-1000 kHz DEP actuation potential applied to a co-planar microelectrode array (MEA) induces a DEP force, altering passing bioparticle trajectories as monitored using: (1) an optical assay, in which the lateral bioparticle velocities are estimated from digital video; and (2) a capacitive cytometer, in which a 1.478 GHz capacitance sensor measures the MEA capacitance perturbations induced by passing bioparticles, which is sensitive to the bioparticles’ elevations. The experimentally observed and simulated lateral velocity profiles of actuated polystyrene microspheres (PSS) and viable and heat shocked Saccharomyces cerevisiae cells verify that the bioparticles’ dielectric phenotypes can be inferred from the resultant trajectories due to the balance between the DEP force and the viscous fluid drag force.
2

A microflow cytometer with simultaneous dielectrophoretic actuation for the optical assay and capacitive cytometry of individual fluid suspended bioparticles

Romanuik, Sean 14 September 2009 (has links)
Fluid suspended biological particles (bioparticles) flowing through a non-uniform electric field are actuated by the induced dielectrophoretic (DEP) force, known to be dependent upon the bioparticles’ dielectric phenotypes. In this work: a 10-1000 kHz DEP actuation potential applied to a co-planar microelectrode array (MEA) induces a DEP force, altering passing bioparticle trajectories as monitored using: (1) an optical assay, in which the lateral bioparticle velocities are estimated from digital video; and (2) a capacitive cytometer, in which a 1.478 GHz capacitance sensor measures the MEA capacitance perturbations induced by passing bioparticles, which is sensitive to the bioparticles’ elevations. The experimentally observed and simulated lateral velocity profiles of actuated polystyrene microspheres (PSS) and viable and heat shocked Saccharomyces cerevisiae cells verify that the bioparticles’ dielectric phenotypes can be inferred from the resultant trajectories due to the balance between the DEP force and the viscous fluid drag force.

Page generated in 0.312 seconds