Spelling suggestions: "subject:"singlet oxygen"" "subject:"winglet oxygen""
11 |
Photochemistry and photobiological implications of functionlazied fullerenes in aqueous systemsSnow, Samuel D. 21 September 2015 (has links)
Fullerenes have been the focus of significant research effort and curiosity for their unique physicochemical and photochemical properties since their discovery almost 30 years ago. C60 fullerene in particular has received tremendous attention, due to its prevalence in fullerene production and chemical stability. While ambitious prospective applications for C60 have been ubiquitous, the extremely hydrophobic nature of fullerenes and consequent aggregation at the nano scale has hampered many endeavors. Researchers, therefore, have turned their attention to the functionalization of fullerenes to add hydrophilic moieties for applications in aqueous media. It is known that functionalizing the C60 cage alters its innate physicochemical and photochemical properties, but how these changes translate to the properties of C60 aggregates, often termed nC60, is not well understood. Functionalized fullerenes present an intriguing environmental dichotomy. On the one hand C60 has excellent potential as a novel singlet oxygen producing disinfection tool, and on the other the potential toxicological effects of functionalized C60 are largely unknown. With thousands of possible functionalities, a mechanistic understanding of the effects of functionalization is essential.
To explore the effects of functionalization on fullerene photochemistry in relevant systems, three types of functional groups were selected and obtained each in series of mono-, bis-, and tris-functionalized forms. Two functionalities contrasted the presence or lack of a quaternary ammonium group and the third was the sterically bulkier phenyl-C61 butyic acid methylester, which is commonly used in polymer photovoltaics. The fullerenes were characterized for innate photochemical properties in organic solvents using UV/Vis, laser flash photolysis, and photochemical degradation experiments. Aqueous aggregates of each derivative were additionally characterized for their physical and chemical properties by dynamic light scattering, transmission electron microscopy, energy dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy. All derivatives were photoactive when dispersed molecularly in organic solvents, but only the cationic fullerenes showed significant photoactivity as aqueous aggregates. Differences in aggregate size or crystallinity were unable to explain the differential photoactivity between derivatives, contrary to two established hypotheses. Antimicrobial properties were probed using innate toxicity tests and photoinactivation experiments. Again, only the cationic fullerenes were found to exert photochemical action towards Escherichia coli or MS2 bacteriophages. The cationic fullerenes were also innately toxic to E. coli due to the presence of quaternary ammonium moieties.
In order to establish a mechanistic understanding of the photochemistry of functionalized C60 aggregates, simulations of the molecular dynamics (MD) were employed and compared with empirical evidences. Simulations provided theoretical values for C60-O2, C60-C60, and C60-H2O interactions for each derivative. Trends observed in the MD results were compared to photochemical characterizations as described above and Raman spectroscopic measurements of C60’s effect on localized water structure. High resolution transmission electron microscopy was used to provide empirical evidence of the C60-C60 interactions. Overall, fullerene aggregate photochemistry is likely driven by aggregate morphology and by intermolecular interactions between fullerenes, water, and O2.
|
12 |
The Development Of Novel Syntheses For Aminocyclitol DerivativesOzturk, Nihal 01 January 2003 (has links) (PDF)
Aminocyclitols have attracted a great deal of attention in recent years because of
diverse biological activities exhibited by them and also synthetic usefulness in the
synthesis of other natural compounds or pharmaceuticals. In this study, novel
synthetic strategies leading to aminocyclitol derivatives were investigated and the
synthesis of aminotetrol derivative (113) was achieved successfully. Moreover, by the
use of singlet oxygen reactions having considerable synthetic utilities in organic
chemistry we developed new synthetic methodologies for the aminoquercitol and
aminoconduritol derivatives (114 and 115). 3a,4,7,7a-tetrahydro-isobenzofuran-1,3-
dione (111) and 3a,7a-dihydro-isobenzofuran-1,3-dione (112) were synthesized from
easily available starting materials in order to be used as key compounds. The
anhydride moiety in key compounds provided us to obtain hydroxymethyl and amine
groups in target molecules by performing Curtius rearrangement. The introduction of
iii
hydroxyl groups into the molecules was achieved by both singlet oxygen and cisdihydroxylation
of osmium tetroxide. As a result of this, we were able to synthesize
aminotetrol derivative and we had considerable advance in the synthesis of
aminoconduritol and aminoquercitol derivatives.
|
13 |
Spektroskopické studium singletního kyslíku v buňkách a modelových systémech / Spectroscopic Study of Singlet Oxygen in Cells and Model SystemsScholz, Marek January 2016 (has links)
Title: Spectroscopic Study of Singlet Oxygen in Cells and Model Systems Author: Marek Scholz Department: Department of Chemical Physics and Optics Supervisor: doc. RNDr. Roman Dědic, Ph.D., KChFO Abstract: Singlet oxygen (1O2), the first excited state of molecular oxygen, plays many important roles in nature and technology. The work is aimed at development of novel methods for monitoring of 1O2 in cells and other biological samples. Two main ap- proaches were employed: direct detection of the very weak near-infrared phospho- rescence of 1O2, and detection of Singlet Oxygen-Feedback Delayed Fluorescence (SOFDF), which is the emission from the photosensitizer induced by energy transfer from 1O2. The first part of the thesis introduces the basic concepts of photophysics and photochemistry of 1O2: its generation, deactivation, applications, and overview of detection methods. The second part presents the experimental results. Wide-field mi- crospectroscopic detection of 1O2 phosphorescence enabled us to acquire 1O2-based images and near-infrared spectra from single cells incubated with photosensitizers. However, the direct detection suffers from the inherently very low phosphorescence quantum yield. It is shown that SOFDF may overcome this problem and become a promising alternative tool for studies of 1O2 and...
|
14 |
Desenvolvimento e avaliação da estabilidade de nanocápsulas poliméricas de licopenoSantos, Priscilla Pereira dos January 2017 (has links)
O licopeno é um composto bioativo que tem recebido atenção especial devido aos seus efeitos terapêuticos no combate e prevenção de doenças como câncer e doenças cardiovasculares. No entanto, por ser insolúvel em água, muito instável na presença de luz, oxigênio e calor, e altamente reativo, sua aplicação nos alimentos é limitada, o que prejudica o acesso do consumidor a produtos naturais como fontes de antioxidantes em substituição aos antioxidantes sintéticos. Assim, a utilização de nanocápsulas de compostos naturais, com ação antioxidante, pode ser considerada uma das tecnologias mais promissoras para disponibilizar compostos mais estáveis e disponíveis ao consumidor. Nesse contexto, nanocápsulas de licopeno extraído do tomate foram desenvolvidas e caracterizadas com o objetivo de conferir solubilidade aparente e estabilidade ao carotenoide em diferentes condições de armazenamento e processamento. O tipo de nanopartícula, a técnica de encapsulamento e o material de parede foram selecionados a partir de um levantamento na literatura, o qual originou os artigos de revisão apresentados. As nanocápsulas de licopeno (LYC-LNC) foram sintetizadas pela técnica de deposição interfacial do polímero pré-formado poli (Ɛcaprolactona) (PCL), mantidas em meio aquoso e caracterizadas com relação aos parâmetros de diâmetro médio, potencial zeta, índice de polidispersão, eficiência de encapsulação, morfologia, pH, cor, viscosidade e concentração de licopeno. Além disso, a estabilidade das nanocápsulas foi avaliada durante armazenamento a 5 °C e 25 °C, em experimentos de fotosensibilização a 5, 15 e 25°C em condições de saturação com ar e N2; e durante aquecimento a 60, 70 e 80 °C na ausência de luz. LYC-LNC apresentaram diâmetro médio de 193 ± 4,7 nm, índice de polidispersão de 0,069 ± 0,02, potencial zeta de -11,5 ± 0,4 mV, viscosidade de 1,09 ± 0,03 mPa.s e pH médio de 6,01 ± 0,04. Durante o armazenamento a 25°C, a suspensão LYC-LNC foi considerada estável pela ausência de alterações significativas no diâmetro, potencial zeta e apesar da redução significativa do pH, cor e concentração de licopeno, as nanocápsulas apresentaram estabilidade satisfatória com aproximadamente 50% do conteúdo total de licopeno após 14 dias de estocagem. Quando as amostras foram armazenadas a 5°C, LYC-LNC mostraram a mesma estabilidade para os parâmetros citados, exceto em relação à concentração do licopeno que teve uma melhora significativa com 40% do conteúdo total do carotenoide após 84 dias de estocagem. A degradação do licopeno durante a fotosensibilização e aquecimento seguiu uma cinética de degradação de primeira ordem e apresentaram energia de ativação de 67,0 kcal/mol e 24,9 kcal/mol respectivamente, valores superiores aos relatados pela literatura. Com base nos resultados obtidos, o presente estudo demonstrou que o nanoencapsulamento é uma técnica que pode, além de aumentar a solubilidade aparente do licopeno em meio aquoso, conferir melhoria na estabilidade em diferentes condições e por isso as LYC-LNC representam uma alternativa promissora para expandir o uso do licopeno em processos industriais, para melhorar a retenção deste composto em diferentes matrizes alimentares. / Lycopene is a bioactive compound that has received special attention due to their therapeutic effects in combating and preventing of diseases such as cancer and cardiovascular disease. However, lycopene is water insoluble, very unstable in presence of light, oxygen and heat and highly reactive, characteristics that can limit its application in food, affecting the access of consumer for natural products that can serve as sources of antioxidants, substituting synthetic antioxidants. Thus, the use of nanocapsules containing natural compounds with antioxidant action can be considered one of the most promising technologies to provide compounds more stable and available to the consumer. In this context, nanocapsules containing lycopene extracted from tomato have been characterized and developed with the objective of conferring apparent solubility and stability of this carotenoid in different storage and processing conditions. The type of nanoparticles, the encapsulation technique and the wall material were selected from a research in the literature, which resulted in review articles. The lycopene nanocapsules (LYC-LNC) were synthesized by the interfacial deposition of preformed poly(Ɛ-caprolactone) (PCL) maintained in an aqueous medium and characterized regarding to parameters such as mean diameter, zeta potential, polydispersity index, encapsulation efficiency, morphology, pH, color, viscosity and lycopene concentration. Furthermore, the stability of nanocapsules during storage was evaluated at 5 °C and 25 °C, in experiments of photosensitization at 5, 15 and 25 °C in saturated conditions with air and N2; and during heating at 60, 70 and 80 °C in the absence of light. LYC-LNC had an average diameter of 193 ± 4.7 nm, polydispersity of 0.069 ± 0.02, zeta potential of -11.5 ± 0.4 mV, viscosity of 1.09 ± 0.03 mPa.s and pH value of 6.01 ± 0.04. During storage at 25 °C, the LYC-LNC suspension remained stable and no significative changes in diameter and zeta potential were observed, and despite of significant reductions in pH, color and lycopene concentration, nanocapsules showed satisfactory stability containing approximately 50% the total content of lycopene after 14 days of storage. However, when the samples were stored at 5 °C, LYC-LNC showed the same stability for the mentioned parameters, except for the lycopene concentration that had a significant improvement, presenting approximately 40% of the total carotenoid content after 84 days of storage. The degradation of lycopene during photosensitization and heating followed a kinetic of first order and showed activation energy of 67.0 kcal/mol and 24.9 kcal/mol respectively, activation energy higher than those reported in the literature. Based on these results, this study demonstrated that the nanoencapsulation is a technique which can, in addition to increasing apparent solubility of lycopene in aqueous medium, confer better stability under different conditions and thus, LYC-LNC represent a promising alternative to expand the use of lycopene in industrial processes by improving the retention of this compound in different food matrices.
|
15 |
Desenvolvimento e avaliação da estabilidade de nanocápsulas poliméricas de licopenoSantos, Priscilla Pereira dos January 2017 (has links)
O licopeno é um composto bioativo que tem recebido atenção especial devido aos seus efeitos terapêuticos no combate e prevenção de doenças como câncer e doenças cardiovasculares. No entanto, por ser insolúvel em água, muito instável na presença de luz, oxigênio e calor, e altamente reativo, sua aplicação nos alimentos é limitada, o que prejudica o acesso do consumidor a produtos naturais como fontes de antioxidantes em substituição aos antioxidantes sintéticos. Assim, a utilização de nanocápsulas de compostos naturais, com ação antioxidante, pode ser considerada uma das tecnologias mais promissoras para disponibilizar compostos mais estáveis e disponíveis ao consumidor. Nesse contexto, nanocápsulas de licopeno extraído do tomate foram desenvolvidas e caracterizadas com o objetivo de conferir solubilidade aparente e estabilidade ao carotenoide em diferentes condições de armazenamento e processamento. O tipo de nanopartícula, a técnica de encapsulamento e o material de parede foram selecionados a partir de um levantamento na literatura, o qual originou os artigos de revisão apresentados. As nanocápsulas de licopeno (LYC-LNC) foram sintetizadas pela técnica de deposição interfacial do polímero pré-formado poli (Ɛcaprolactona) (PCL), mantidas em meio aquoso e caracterizadas com relação aos parâmetros de diâmetro médio, potencial zeta, índice de polidispersão, eficiência de encapsulação, morfologia, pH, cor, viscosidade e concentração de licopeno. Além disso, a estabilidade das nanocápsulas foi avaliada durante armazenamento a 5 °C e 25 °C, em experimentos de fotosensibilização a 5, 15 e 25°C em condições de saturação com ar e N2; e durante aquecimento a 60, 70 e 80 °C na ausência de luz. LYC-LNC apresentaram diâmetro médio de 193 ± 4,7 nm, índice de polidispersão de 0,069 ± 0,02, potencial zeta de -11,5 ± 0,4 mV, viscosidade de 1,09 ± 0,03 mPa.s e pH médio de 6,01 ± 0,04. Durante o armazenamento a 25°C, a suspensão LYC-LNC foi considerada estável pela ausência de alterações significativas no diâmetro, potencial zeta e apesar da redução significativa do pH, cor e concentração de licopeno, as nanocápsulas apresentaram estabilidade satisfatória com aproximadamente 50% do conteúdo total de licopeno após 14 dias de estocagem. Quando as amostras foram armazenadas a 5°C, LYC-LNC mostraram a mesma estabilidade para os parâmetros citados, exceto em relação à concentração do licopeno que teve uma melhora significativa com 40% do conteúdo total do carotenoide após 84 dias de estocagem. A degradação do licopeno durante a fotosensibilização e aquecimento seguiu uma cinética de degradação de primeira ordem e apresentaram energia de ativação de 67,0 kcal/mol e 24,9 kcal/mol respectivamente, valores superiores aos relatados pela literatura. Com base nos resultados obtidos, o presente estudo demonstrou que o nanoencapsulamento é uma técnica que pode, além de aumentar a solubilidade aparente do licopeno em meio aquoso, conferir melhoria na estabilidade em diferentes condições e por isso as LYC-LNC representam uma alternativa promissora para expandir o uso do licopeno em processos industriais, para melhorar a retenção deste composto em diferentes matrizes alimentares. / Lycopene is a bioactive compound that has received special attention due to their therapeutic effects in combating and preventing of diseases such as cancer and cardiovascular disease. However, lycopene is water insoluble, very unstable in presence of light, oxygen and heat and highly reactive, characteristics that can limit its application in food, affecting the access of consumer for natural products that can serve as sources of antioxidants, substituting synthetic antioxidants. Thus, the use of nanocapsules containing natural compounds with antioxidant action can be considered one of the most promising technologies to provide compounds more stable and available to the consumer. In this context, nanocapsules containing lycopene extracted from tomato have been characterized and developed with the objective of conferring apparent solubility and stability of this carotenoid in different storage and processing conditions. The type of nanoparticles, the encapsulation technique and the wall material were selected from a research in the literature, which resulted in review articles. The lycopene nanocapsules (LYC-LNC) were synthesized by the interfacial deposition of preformed poly(Ɛ-caprolactone) (PCL) maintained in an aqueous medium and characterized regarding to parameters such as mean diameter, zeta potential, polydispersity index, encapsulation efficiency, morphology, pH, color, viscosity and lycopene concentration. Furthermore, the stability of nanocapsules during storage was evaluated at 5 °C and 25 °C, in experiments of photosensitization at 5, 15 and 25 °C in saturated conditions with air and N2; and during heating at 60, 70 and 80 °C in the absence of light. LYC-LNC had an average diameter of 193 ± 4.7 nm, polydispersity of 0.069 ± 0.02, zeta potential of -11.5 ± 0.4 mV, viscosity of 1.09 ± 0.03 mPa.s and pH value of 6.01 ± 0.04. During storage at 25 °C, the LYC-LNC suspension remained stable and no significative changes in diameter and zeta potential were observed, and despite of significant reductions in pH, color and lycopene concentration, nanocapsules showed satisfactory stability containing approximately 50% the total content of lycopene after 14 days of storage. However, when the samples were stored at 5 °C, LYC-LNC showed the same stability for the mentioned parameters, except for the lycopene concentration that had a significant improvement, presenting approximately 40% of the total carotenoid content after 84 days of storage. The degradation of lycopene during photosensitization and heating followed a kinetic of first order and showed activation energy of 67.0 kcal/mol and 24.9 kcal/mol respectively, activation energy higher than those reported in the literature. Based on these results, this study demonstrated that the nanoencapsulation is a technique which can, in addition to increasing apparent solubility of lycopene in aqueous medium, confer better stability under different conditions and thus, LYC-LNC represent a promising alternative to expand the use of lycopene in industrial processes by improving the retention of this compound in different food matrices.
|
16 |
The Investigation of Photocatalysts and Iron Based Materials in the Oxidation and the Adsorption of Toxic Organic and Chromium MaterialsJiang, Wenjun 13 November 2013 (has links)
The presences of heavy metals, organic contaminants and natural toxins in natural water bodies pose a serious threat to the environment and the health of living organisms. Therefore, there is a critical need to identify sustainable and environmentally friendly water treatment processes. In this dissertation, I focus on the fundamental studies of advanced oxidation processes and magnetic nano-materials as promising new technologies for water treatments.
Advanced oxidation processes employ reactive oxygen species (ROS) which can lead to the mineralization of a number of pollutants and toxins. The rates of formation, steady-state concentrations, and kinetic parameters of hydroxyl radical and singlet oxygen produced by various TiO2 photocatalysts under UV or visible irradiations were measured using selective chemical probes. Hydroxyl radical is the dominant ROS, and its generation is dependent on experimental conditions. The optimal condition for generation of hydroxyl radical by of TiO2 coated glass microspheres is studied by response surface methodology, and the optimal conditions are applied for the degradation of dimethyl phthalate. Singlet oxygen (1O2) also plays an important role for advanced processes, so the degradation of microcystin-LR by rose bengal, an 1O2 sensitizer was studied. The measured bimolecular reaction rate constant between MC-LR and 1O2 is ~ 106 M-1 s-1 based on competition kinetics with furfuryl alcohol.
The typical adsorbent needs separation after the treatment, while magnetic iron oxides can be easily removed by a magnetic field. Maghemite and humic acid coated magnetite (HA-Fe3O4) were synthesized, characterized and applied for chromium(VI) removal. The adsorption of chromium(VI) by maghemite and HA-Fe3O4 follow a pseudo-second-order kinetic process. The adsorption of chromium(VI) by maghemite is accurately modeled using adsorption isotherms, and solution pH and presence of humic acid influence adsorption. Humic acid coated magnetite can adsorb and reduce chromium(VI) to non-toxic chromium (III), and the reaction is not highly dependent on solution pH. The functional groups associated with humic acid act as ligands lead to the Cr(III) complex via a coupled reduction-complexation mechanism. Extended X-ray absorption fine structure spectroscopy demonstrates the Cr(III) in the Cr-loaded HA-Fe3O4 materials has six neighboring oxygen atoms in an octahedral geometry with average bond lengths of 1.98 Å.
|
17 |
Method For Determination Of Singlet Oxygen Quantum Yields For New Fluorene-based Photosensitizers In Aqueous Media For The Advancement Of Photodynamic TherapyGrabow, Wade William 01 January 2004 (has links)
Photodynamic therapy (PDT) has been investigated over the past three decades and is currently an approved therapeutic modality for skin cancer, the treatment of superficial bladder, early lung and advanced esophageal cancers, and age-related macular degeneration in a number of countries. In PDT, the absorption of light by a chromophore generates cytotoxic species such as reactive singlet oxygen, leading to irreversible destruction of the treated tissue. The measurement of the singlet oxygen quantum yield is an important determinant used to evaluate the efficiency of new photodynamic therapy agents developed in the laboratory, to screen potential photosensitizers in aqueous media.The singlet oxygen quantum yield is a quantitative measurement of the efficiency in which photosensitizers are able to use energy, in the form of light, to convert oxygen in the ground state to the reactive species singlet oxygen useful in photodynamic therapy. Singlet oxygen quantum yields of photosensitizers differ when measured in different solvents. The majority of the existing quantum yield values found in literature for various photosensitizers are documented with the sensitizers in organic solvents though values in aqueous media are more valuable for actual applications. Determination of accurate and precise quantum yield values in aqueous solution is a much more difficult problem than in organic media. Problems in aqueous solution arise primarily from the physicochemical properties of singlet oxygen in water. Singlet oxygen has a much shorter lifetime in water than it does in organic solvents, causing challenges with respect to quantitative detection of singlet oxygen.The ensuing pages are an attempt to explore the theory and document the procedures developed to provide the accurate measurement of singlet oxygen in aqueous media. Details of this experimental method and singlet oxygen quantum yield results of new compounds relative to established photosensitizers will be presented.
|
18 |
Enhanced Singlet Oxygen Production from Metal Nanoparticle Based Hybrid PhotosensitizersDing, Rui 26 May 2016 (has links)
No description available.
|
19 |
Enhancement of Silver Nanoparticles in Fluorescence, Raman and Singlet Oxygen GenerationZhang, Jinnan 03 June 2016 (has links)
No description available.
|
20 |
Photooxidation and Photosensitized Oxidation of Linoleic Acid, Milk, and LardLee, JaeHwan January 2002 (has links)
No description available.
|
Page generated in 0.0933 seconds