• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Kinematic evolution of the Great Glen Fault Zone, Scotland

Stewart, Martyn January 1997 (has links)
No description available.
2

Sinsistral high strain in the Coast Mountains near Bella Coola, West Central British Columbia

Demerse, Deirdre K. 05 1900 (has links)
The Bella Coola area geographically straddles two zones of known Early to mid-Cretaceous sinistral ductile strain; the Grenville, Kitkatla, and Principe-Laredo shear zones to the northwest located near Prince Rupert, B.C., and the Tchaikazan fault system to the southeast. At the latitude of Bella Coola in west-central B.C., the Pootlass High Strain Zone (PHSZ) is a ductile, subvertical, shear zone system at least 2 km wide and at least 30 km long. The purpose of this study is to determine the age, kinematics, and tectonic significance of the PHSZ, and to investigate whether or not it was active as a kinematic link to Early to mid-Cretaceous sinistral ductile strain zones in the western Canadian Cordillera. This thesis reports recent observations from field mapping and new geochronological, microstructural, and petrological data, from which the PHSZ is characterized and placed into a regional tectonic framework. U-Pb and 40Ar/39Ar isotopic geochronology indicate that regionally extensive, southwest-vergent folding in the PHSZ area was active prior to 114 Ma and persisted until at least 73 Ma. High-temperature, ductile, sinistral non-coaxial strain in the PHSZ was accommodated between 76 (or earlier) and 62 Ma. Localization of high strain is associated with the emplacement of plutonic rock and abundant intrusive sills, which likely acted as a strain-softening mechanism. L-tectonites within the deformed plutonic rocks attest to the weakness of the rocks during deformation and support syn-kinematic magmatism. Geothermometric and petrological data suggest that deformation occurred at temperatures of 537 to 731°C and at crustal depths of —23 km. The PHSZ is interpreted to be kinematically related to the Talchako Fault to the east, which was active as a sinistral mylonitic shear zone between 70 and 65 Ma. A kinematic relationship between the PHSZ and the Grenville, Kitkatla and Principe-Laredo shear zones near Prince Rupert imply a protracted history of sinistral transpression in the Coast Mountains of British Columbia that persisted in the Bella Coola region through Late Cretaceous time.
3

Sinsistral high strain in the Coast Mountains near Bella Coola, West Central British Columbia

Demerse, Deirdre K. 05 1900 (has links)
The Bella Coola area geographically straddles two zones of known Early to mid-Cretaceous sinistral ductile strain; the Grenville, Kitkatla, and Principe-Laredo shear zones to the northwest located near Prince Rupert, B.C., and the Tchaikazan fault system to the southeast. At the latitude of Bella Coola in west-central B.C., the Pootlass High Strain Zone (PHSZ) is a ductile, subvertical, shear zone system at least 2 km wide and at least 30 km long. The purpose of this study is to determine the age, kinematics, and tectonic significance of the PHSZ, and to investigate whether or not it was active as a kinematic link to Early to mid-Cretaceous sinistral ductile strain zones in the western Canadian Cordillera. This thesis reports recent observations from field mapping and new geochronological, microstructural, and petrological data, from which the PHSZ is characterized and placed into a regional tectonic framework. U-Pb and 40Ar/39Ar isotopic geochronology indicate that regionally extensive, southwest-vergent folding in the PHSZ area was active prior to 114 Ma and persisted until at least 73 Ma. High-temperature, ductile, sinistral non-coaxial strain in the PHSZ was accommodated between 76 (or earlier) and 62 Ma. Localization of high strain is associated with the emplacement of plutonic rock and abundant intrusive sills, which likely acted as a strain-softening mechanism. L-tectonites within the deformed plutonic rocks attest to the weakness of the rocks during deformation and support syn-kinematic magmatism. Geothermometric and petrological data suggest that deformation occurred at temperatures of 537 to 731°C and at crustal depths of —23 km. The PHSZ is interpreted to be kinematically related to the Talchako Fault to the east, which was active as a sinistral mylonitic shear zone between 70 and 65 Ma. A kinematic relationship between the PHSZ and the Grenville, Kitkatla and Principe-Laredo shear zones near Prince Rupert imply a protracted history of sinistral transpression in the Coast Mountains of British Columbia that persisted in the Bella Coola region through Late Cretaceous time.
4

Sinsistral high strain in the Coast Mountains near Bella Coola, West Central British Columbia

Demerse, Deirdre K. 05 1900 (has links)
The Bella Coola area geographically straddles two zones of known Early to mid-Cretaceous sinistral ductile strain; the Grenville, Kitkatla, and Principe-Laredo shear zones to the northwest located near Prince Rupert, B.C., and the Tchaikazan fault system to the southeast. At the latitude of Bella Coola in west-central B.C., the Pootlass High Strain Zone (PHSZ) is a ductile, subvertical, shear zone system at least 2 km wide and at least 30 km long. The purpose of this study is to determine the age, kinematics, and tectonic significance of the PHSZ, and to investigate whether or not it was active as a kinematic link to Early to mid-Cretaceous sinistral ductile strain zones in the western Canadian Cordillera. This thesis reports recent observations from field mapping and new geochronological, microstructural, and petrological data, from which the PHSZ is characterized and placed into a regional tectonic framework. U-Pb and 40Ar/39Ar isotopic geochronology indicate that regionally extensive, southwest-vergent folding in the PHSZ area was active prior to 114 Ma and persisted until at least 73 Ma. High-temperature, ductile, sinistral non-coaxial strain in the PHSZ was accommodated between 76 (or earlier) and 62 Ma. Localization of high strain is associated with the emplacement of plutonic rock and abundant intrusive sills, which likely acted as a strain-softening mechanism. L-tectonites within the deformed plutonic rocks attest to the weakness of the rocks during deformation and support syn-kinematic magmatism. Geothermometric and petrological data suggest that deformation occurred at temperatures of 537 to 731°C and at crustal depths of —23 km. The PHSZ is interpreted to be kinematically related to the Talchako Fault to the east, which was active as a sinistral mylonitic shear zone between 70 and 65 Ma. A kinematic relationship between the PHSZ and the Grenville, Kitkatla and Principe-Laredo shear zones near Prince Rupert imply a protracted history of sinistral transpression in the Coast Mountains of British Columbia that persisted in the Bella Coola region through Late Cretaceous time. / Science, Faculty of / Earth, Ocean and Atmospheric Sciences, Department of / Graduate

Page generated in 0.0472 seconds