• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estabilidade exponencial de um sistema termo elástico poroso: lei de Cattaneo versus lei de Fourier

NUNES, Marly dos Anjos 30 March 2012 (has links)
Submitted by Irvana Coutinho (irvana@ufpa.br) on 2015-06-01T13:26:18Z No. of bitstreams: 2 license_rdf: 22974 bytes, checksum: 99c771d9f0b9c46790009b9874d49253 (MD5) Dissertacao_EstabilidadeExponencialSistema.pdf: 311901 bytes, checksum: c3c8ac7811de4932cbfc841dac8382b3 (MD5) / Approved for entry into archive by Irvana Coutinho (irvana@ufpa.br) on 2015-06-01T13:26:50Z (GMT) No. of bitstreams: 2 license_rdf: 22974 bytes, checksum: 99c771d9f0b9c46790009b9874d49253 (MD5) Dissertacao_EstabilidadeExponencialSistema.pdf: 311901 bytes, checksum: c3c8ac7811de4932cbfc841dac8382b3 (MD5) / Made available in DSpace on 2015-06-01T13:26:50Z (GMT). No. of bitstreams: 2 license_rdf: 22974 bytes, checksum: 99c771d9f0b9c46790009b9874d49253 (MD5) Dissertacao_EstabilidadeExponencialSistema.pdf: 311901 bytes, checksum: c3c8ac7811de4932cbfc841dac8382b3 (MD5) Previous issue date: 2012 / No presente trabalho estudamos a existência e unicidade de solução bem como o decaimento exponencial do modelo abaixo. Nosso resultado mais importante versa sobre o decaimento exponencial do sistema termo-elástico-poroso: Cattaneo versus Fourier, dado por: ρutt = µuxx + bφx − βθx em (0, π) × (0, ∞), Jθφtt = αφxx − bux − ξφ+mθ – γφt em (0, π) × (0, ∞), cθt = k∗qx − βuxt − mφt em (0, π) × (0, ∞), τq mφt= −βq − θx em (0, π) × (0, ∞), u = φx = θ = q = 0 sobre (0, π) × (0, ∞), (u(., 0), φ (., 0), θ (., 0), q(., 0)) = (u0 (x), φ0 (x), θ0 (x), q0 (x)) em (0, π), (ut(., 0), φt(., 0)) = (u1(x), φ1(x)) em (0, π), a existência e unicidade sera´ obtida usando o Teorema de Lumer-Phillips e para o decaimento exponencial usaremos uma técnica de semigrupo. / In this dissertation we study there rst distance and uniqueness of solutions dog as well as the exponential decay model. Our most important result concerns the exponential decay of the system porous-thermo-elasticity: utt = uxx + b x − x em (0, ) × (0, 1), J tt = xx − bux − φ + mθ − t em (0, ) × (0, 1), c t = k qx − uxt − m t em (0, ) × (0, 1), qt = 쀀 q − x em (0, ) × (0, 1), u = x = θ = q = 0 sobre (0, ) × (0, 1), (u(:, 0), (:, 0), (:, 0), q(:, 0)) = (u0(x), 0(x), 0(x), q0(x)) em (0, ), (ut(:, 0), t(:, 0)) = (u1(x), 1(x)) em (0, ), the existence and uniqueness is obtained using the Theorem of Lumer-Phillips and the expo- nential decay will use a technical the semigroup.

Page generated in 0.1223 seconds