Spelling suggestions: "subject:"cistemas fuzzy baseado em regras"" "subject:"cistemas fuzzy baseada em regras""
1 |
Tratamento de imprecisão na geração de árvores de decisãoLopes, Mariana Vieira Ribeiro 03 March 2016 (has links)
Submitted by Ronildo Prado (ronisp@ufscar.br) on 2017-08-08T20:30:11Z
No. of bitstreams: 1
DissMVRL.pdf: 2179441 bytes, checksum: 3c4089c4b24a3d98521f8561c6f2c515 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-08-08T20:30:33Z (GMT) No. of bitstreams: 1
DissMVRL.pdf: 2179441 bytes, checksum: 3c4089c4b24a3d98521f8561c6f2c515 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-08-08T20:30:39Z (GMT) No. of bitstreams: 1
DissMVRL.pdf: 2179441 bytes, checksum: 3c4089c4b24a3d98521f8561c6f2c515 (MD5) / Made available in DSpace on 2017-08-08T20:31:24Z (GMT). No. of bitstreams: 1
DissMVRL.pdf: 2179441 bytes, checksum: 3c4089c4b24a3d98521f8561c6f2c515 (MD5)
Previous issue date: 2016-03-03 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Inductive Decision Trees (DT) are mechanisms based on the symbolic paradigm of machine learning which main characteristics are easy interpretability and low computational cost. Though they are widely used, the DTs can represent problems with just discrete or continuous variables. However, for some problems, the variables are not well represented in this way. In order to improve DTs, the Fuzzy Decision Trees (FDT) were developed, adding the ability to deal with fuzzy variables to the Inductive Decision Trees, making them capable to deal with imprecise knowledge. In this text, it is presented a new algorithm for fuzzy decision trees induction. Its fuzification method is applied during the induction and it is inspired by the C4.5’s partitioning method for continuous attributes. The proposed algorithm was tested with 20 datasets from UCI repository (LICHMAN, 2013). It was compared with other three algorithms that implement different solutions to classification problem: C4.5, which induces an Inductive Decision Tree, FURIA, that induces a Rule-based Fuzzy System and FuzzyDT, which induces a Fuzzy Decision Tree where the fuzification is done before tree’s induction is performed. The results are presented in Chapter 4. / As Árvores de Decisão Indutivas (AD) são um mecanismo baseado no paradigma simbólico do Aprendizado de Máquina que tem como principais características a fácil interpretabilidade e baixo custo computacional. Ainda que sejam amplamente utilizadas, as ADs são limitadas à representação de problemas cujas variáveis são do tipo discreto ou contínuo. No entanto, para alguns tipos de problemas, pode haver variáveis que não são bem representadas por estes formatos. Diante deste contexto, foram criadas as Árvores de Decisão Fuzzy (ADF), que adicionam à interpretabilidade das Árvores de Decisão Indutivas, a capacidade de lidar com variáveis fuzzy, as quais representam adequadamente conhecimentos imprecisos. Neste texto, apresentamos o trabalho desenvolvido durante o mestrado, que tem como principal resultado um novo algoritmo para indução de Árvores de Decisão Fuzzy, cujo método de fuzificação dos atributos contínuos é realizado durante a indução da árvore e foi inspirado no método de particionamento de atributos contínuos adotado pelo C4.5. Para validação do algoritmo, foram realizados testes com 20 conjuntos de dados do repositório UCI (LICHMAN, 2013) e o algoritmo foi comparado com outros três algoritmos que abordam o problema de classificação por meio de técnicas diferentes: o C4.5 que induz uma Árvore de Decisão Indutiva, o FURIA, que induz um Sistema Fuzzy Baseado em Regras, porém não segue a estrutura de árvore e o FuzzyDT que induz uma Árvore de Decisão fuzzy realizando a fuzificação dos atributos contínuos antes da indução da árvore. Os resultados dos experimentos realizados são apresentados e discutidos no Capítulo 4 deste texto.
|
Page generated in 0.1258 seconds