• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Previsão de horários dos ônibus do sistema de transporte público coletivo de Campina Grande.

MACIEL, Matheus de Araújo. 24 May 2018 (has links)
Submitted by Maria Medeiros (maria.dilva1@ufcg.edu.br) on 2018-05-24T12:09:46Z No. of bitstreams: 1 MATHEUS DE ARAÚJO MACIEL - DISSERTAÇÃO (PPGCC) 2016.pdf: 1452809 bytes, checksum: 4919281053ceb7031a223f7bff5b2678 (MD5) / Made available in DSpace on 2018-05-24T12:09:46Z (GMT). No. of bitstreams: 1 MATHEUS DE ARAÚJO MACIEL - DISSERTAÇÃO (PPGCC) 2016.pdf: 1452809 bytes, checksum: 4919281053ceb7031a223f7bff5b2678 (MD5) Previous issue date: 2016 / A previsibilidade dos serviços de transporte público é um aspecto central para a melhoria da experiência de seus usuários. Contudo, por funcionar dentro de um ambiente estocástico, essa previsibilidade é tipicamente prejudicada. Neste trabalho investigamos a possibilidade de tornar um sistema de transporte público mais previsível através do uso das informações históricas em um contexto onde não há disponível tecnologia de localização tempo real dos veículos ou informação atualizada sobre a operação do serviço. Embora GPS e outras tecnologias de Automatic vehicle location (AVL) em tempo real existam, muitos municípios brasileiros não as têm disponíveis. Considerando essa situação, utilizamos dados históricos de operação do sistema de ônibus da cidade de Campina Grande para avaliar o desempenho de quatro algoritmos de regressão na tarefa de prever no início do dia como os horários programados para os ônibus serão cumpridos. Os resultados apontam que embora a falta de informação em tempo real prejudique a capacidade preditiva dos algoritmos em determinadas situações, utilizá-los torna possível a previsão dos horários de saída reais dos ônibus com erro mediano de 28 segundos, e a previsão dos horários de fim de viagem com erro de mediano de -167 segundos. / Predictability of public transport services is essential to improving its user experience. However,by working within a stochastic environment, predictability is typically impaired. In this work, we investigate the possibility of making a more predictable public transport system through the use of historical information, in a context where there is no available real-time vehicle location technology or updated information on the operation of the system. While GPS and other real- time Automatic Vehicle Location technologies (AVL) exists, many Brazilian cities do not have them available. Aware of this situation, we used data from the Campina Grande city bus system to evaluate the performance of four regression algorithms on the task of predicting, early in the day, how buses scheduled times will be fulfilled. Results show, although the lack of real time information may harm algorithms predictive ability in certain situations, using them makes it possible to forecast actual buses departure times with a median error of 28 seconds and buses arrival time with a median error of -167 seconds.
2

Determinação de caminhos mínimos em aplicações de transporte público: um estudo de caso para a cidade de Porto Alegre

Bastos, Rodrigo 27 September 2013 (has links)
Submitted by William Justo Figueiro (williamjf) on 2015-07-21T22:37:51Z No. of bitstreams: 1 63c.pdf: 2699232 bytes, checksum: 1ae2013ef31101508f9fef3997d71790 (MD5) / Made available in DSpace on 2015-07-21T22:37:51Z (GMT). No. of bitstreams: 1 63c.pdf: 2699232 bytes, checksum: 1ae2013ef31101508f9fef3997d71790 (MD5) Previous issue date: 2013 / SIMTUR - Sistema Inteligente De Monitoramento de Tráfego Urbano / O crescente aumento do uso de automóveis e de motocicletas tem provocado uma contínua degradação no trânsito urbano das grandes metrópoles. Este cenário é agravado pelas deficiências nos atuais sistemas de transporte público, geradas, em parte, pela falta de informação ao usuário. O presente trabalho apresenta um modelo computacional para um sistema de informação ao usuário de transporte público. Ao contrário de outros trabalhos baseados no algoritmo clássico Dijkstra, a abordagem apresentada faz uso do algoritmo A* para resolução do problema de caminhos mínimos, presente neste contexto, a fim de reduzir o tempo de resposta de maneira que o modelo possa ser utilizado em um sistema real de informação ao usuário. O modelo proposto considera múltiplos critérios de decisão, como a distância total percorrida e o número de transbordos. Um estudo de caso foi realizado utilizando dados reais do transporte público da cidade Porto Alegre com o objetivo de avaliar o modelo computacional desenvolvido. Os resultados gerados foram comparados com aqueles obtidos através do emprego do algoritmo Dijkstra e indicam que a combinação do algoritmo A* com técnicas de aceleração permite reduzir, significativamente, a complexidade de espaço, o tempo de processamento e o número de transbordos. / The increasing use of automobiles and motorcycles has caused a continuous degradation in the traffic of large cities. This scenario gets worse due to shortcomings in the current public transportation, which is entailed, in a certain way, by the lack of information provided to the user. This study shows a computing model for a public transportation user information system. Unlike other studies based on the classical Dijkstra’s algorithm, the approach makes use of the algorithm A* to solve a shortest path problem to reduce the response time so that the model can be used in an real-time web information system. The proposed model takes into account multiple criteria of decision, such as total distance traveled and number of transfers and it was evaluated with data from Porto Alegre’s public transportation. The results were compared to those ones obtained by the use of Dijkstra’s algorithm and indicate that the combination of algorithm A* with acceleration techniques allows reducing significantly the space complexity, processing time and the number of transfers.

Page generated in 0.1403 seconds