Spelling suggestions: "subject:"cistemas dde alerta antecipada"" "subject:"cistemas dde alerta antecipar""
1 |
Modelagem generalista ou individualizada na construção de modelos preditivos para a identificação de insucesso acadêmicoMarcon, Paulo Fernando Benetti 31 March 2017 (has links)
Submitted by JOSIANE SANTOS DE OLIVEIRA (josianeso) on 2017-06-27T13:30:09Z
No. of bitstreams: 1
Paulo Fernando Benetti Marcon_.pdf: 962793 bytes, checksum: 8c45fbcf4084b51d6348450029bf5f28 (MD5) / Made available in DSpace on 2017-06-27T13:30:09Z (GMT). No. of bitstreams: 1
Paulo Fernando Benetti Marcon_.pdf: 962793 bytes, checksum: 8c45fbcf4084b51d6348450029bf5f28 (MD5)
Previous issue date: 2017-03-31 / Nenhuma / O uso de recursos tecnológicos para auxiliar nas tarefas de ensino e aprendizagem é uma realidade. A disseminação de ambientes virtuais de aprendizado, como meio de promover a realização de cursos on-line, demonstra franca expansão. Além de tarefas que propiciam a ampliação dos meios de ensino, tais sistemas permitem o registro completo de todas as interações dos alunos no decorrer da realização de disciplinas. Essa gama de informação produzida pode ser utilizada para predição de estudantes em situação de risco enquanto a disciplina ocorre, o que para instituições de ensino pode representar redução nos índices de reprovação e evasão. Entretanto o número elevado de variáveis envolvidas, ainda mais quando várias disciplinas são consideradas, dificulta a construção de modelos computacionais eficientes. Desta forma, este trabalho visa investigar a construção de modelos generalistas – treinados com dados de diversas disciplinas disponíveis – contrapondo a construção de modelos
individualizados – treinados individualmente com dados de cada disciplina. Para isto um amplo conjunto de dados educacionais foi extraído, obtido de uma instituição de ensino superior, composto de diferentes cursos, disciplinas e períodos letivos, não sendo utilizadas variáveis que invadissem a privacidade dos estudantes. Uma vez definidas as características e transformações dos dados que contribuíam à identificação de insucesso acadêmico no decorrer da disciplina então foram aplicados algoritmos clássicos de Mineração de Dados seguindo ambas as abordagens, generalista e individualizada, e a cada unidade de conteúdo das disciplinas. Os
resultados obtidos demonstram vantagens e desvantagens de ambas as abordagens e que dadas as circunstâncias os modelos individualizados podem ser melhores, obtendo taxas de acerto maiores, e que em outras circunstâncias modelos generalistas apresentam um custo menor para a obtenção e manutenção dos modelos preditivos, mesmo com uma queda nos índices de acerto. / The use of technological resources to assist teaching and learning tasks is a reality. The
dissemination of virtual learning environments, as a mean of promoting online courses, shows a clear expansion. In addition to tasks that allow the expansion of teaching resources, such systems allow the complete recording of all the interactions of the students inside the courses. This range of information produced can be used to predict at-risk students while the course is taking place, which for educational institutions may represent a reduction in failure and dropout rates. However, the high number of variables involved, especially when several courses are considered, makes it difficult to construct efficient computational models. In this way, this work aims to investigate the construction of generalist models – trained with data from several available courses – counterposing the construction of individualized models – individually trained with data from each course. In this way, a broad set of educational data was extracted, obtained from a higher education institution, composed of different undergraduate programs, courses and academic periods, not using variables that invaded students' privacy. Once the
characteristics and transformations of the data that contributed to the identification of academic insuccess during the course were defined, then classical data mining algorithms were applied following both generalist and individualized approaches and to each content unit of the course. The results obtained demonstrate the advantages and disadvantages of both approaches and that given the circumstances the individualized models may be better, obtaining higher hit rates, and that in other circumstances generalist models present a lower cost for the obtaining and maintenance of the predictive models, even with a drop in hit rates.
|
2 |
Uma arquitetura baseada na teoria do perigo para predição de ataques de segurança em redes autonômicasOliveira, Dilton Dantas de 31 January 2013 (has links)
The growth in the number of connected devices, in the volume of data traffic and of applications used has shown a significant increase in the complexity of today's networks,
leaving the activity of management increasingly difficult for network and system administrators. Management aspects, such as the security of these systems has been a major
challenge faced by the researchers, especially considering that, in parallel, there has been also a significant increase in the degree of sophistication of malicious activities. This scenario requires the development of sophisticated security systems also, in order to prevent or contain attacks increasingly destructive to systems, such as worm attacks. And the biological inspiration has been a main ally in this endeavor, bringing several concepts and new ways of thinking and solving these problems. This work used the bio-inspired concepts of Autonomic Networks (self-managing networks inspired by the functioning of the human nervous system)and Artificial Immune Systems (computer security systems inspired by the functioning of the human immune system), to define a management architecture for network self-protection, through the prediction of security attacks. This architecture incorporates the Danger Theory immune-inspired model and uses its Dendritic Cells algorithm to correlate events and detect anomalies. The architecture analysis was performed on an Early Warning System, which uses notifications received from worm already infected machines as additional information to identify the imminence of an infection in still vulnerable machines. In the experiments the gain in time obtained with this early identification was used in the Conficker worm propagation model and the results showed a reduction in the number of infected machines and, consequently, in the worm propagation across a network / O crescimento do número de dispositivos conectados, do volume de dados trafegados e das aplicações utilizadas tem evidenciado um aumento importante na complexidade das redes
atuais, deixando a atividade de gerência cada vez mais difícil para os administradores de redes e sistemas. Aspectos de gerência, como a segurança desses sistemas tem sido um dos
principais desafios enfrentados pelos pesquisadores, principalmente, considerando que, em paralelo, observa-se um também importante aumento no grau de sofisticação das atividades maliciosas. Tal cenário exige o desenvolvimento de sistemas de segurança igualmente sofisticados, com o intuito de impedir ou conter ataques cada vez mais destrutivos aos
sistemas, como os ataques de worms. E a inspiração biológica tem sido uma das grandes aliadas nesta empreitada, trazendo diversos conceitos e novas formas de pensar e resolver
esses problemas. Este trabalho utilizou os conceitos bio-inspirados das Redes Autonômicas (redes autogerenciáveis inspiradas nos funcionamento do sistema nervoso humano) e dos
Sistemas Imunes Artificiais (sistemas de segurança computacional inspirados no funcionamento do sistema imunológico humano), para definir uma arquitetura de gerência
para autoproteção de redes, através da predição de ataques de segurança. Tal arquitetura incorpora o modelo imuno-inspirado da Teoria do Perigo e utiliza o seu Algoritmo das Células Dendríticas para correlacionar eventos e detectar anomalias. A análise da arquitetura foi realizada em um Sistema de Alerta Antecipado, que usa notificações recebidas de máquinas já infectadas por worm como informação adicional para identificar a iminência de uma infecção em máquinas ainda vulneráveis. Nos experimentos o ganho de tempo obtido com essa identificação precoce foi utilizado no modelo de propagação do worm Conficker e os resultados apontaram uma redução no número de máquinas infectadas e, consequentemente, na propagação deste worm em uma rede
|
Page generated in 0.078 seconds