• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contributions to ida-pbc with adaptive control for underactuated mechanical systems

Popayán Avila, Jhossep Augusto 17 October 2018 (has links)
This master thesis is devoted to developing an adaptive control scheme for the well- known Interconnection and Damping Assignment Passivity-Based Control (IDA-PBC) technique. The main objective of this adaptive scheme is to asymptotically stabilize a class of Underactuated Mechanical Systems (UMSs) in the presence of uncertainties (not necessarily matched). This class of UMSs is characterized by the solvability of the Partial Differential Equation (PDE) resulting from the IDA-PBC technique. Two propositions are stated in this work to design the adaptive IDA-PBC. One of the main properties of these propositions is that even though the parameter estimation conver- gence is not guaranteed, the adaptive IDA-PBC achieves asymptotic stabilization. To illustrate the effectiveness of these propositions, this work performs simulations of the Inertia Wheel Inverted Pendulum (IWIP) system, considering a time-dependent input disturbance, a type of physical damping, i.e., friction (not considered in the standard IDA-PBC methodology), and parameter uncertainties in the system (e.g., inertia). / Tesis
2

Contributions to ida-pbc with adaptive control for underactuated mechanical systems

Popayán Avila, Jhossep Augusto 17 October 2018 (has links)
This master thesis is devoted to developing an adaptive control scheme for the well- known Interconnection and Damping Assignment Passivity-Based Control (IDA-PBC) technique. The main objective of this adaptive scheme is to asymptotically stabilize a class of Underactuated Mechanical Systems (UMSs) in the presence of uncertainties (not necessarily matched). This class of UMSs is characterized by the solvability of the Partial Differential Equation (PDE) resulting from the IDA-PBC technique. Two propositions are stated in this work to design the adaptive IDA-PBC. One of the main properties of these propositions is that even though the parameter estimation conver- gence is not guaranteed, the adaptive IDA-PBC achieves asymptotic stabilization. To illustrate the effectiveness of these propositions, this work performs simulations of the Inertia Wheel Inverted Pendulum (IWIP) system, considering a time-dependent input disturbance, a type of physical damping, i.e., friction (not considered in the standard IDA-PBC methodology), and parameter uncertainties in the system (e.g., inertia). / Tesis
3

State estimation for coupled PDE systems using Modulation Functions

Pumaricra Rojas, David Raul 27 April 2022 (has links)
This master thesis is devoted to the state estimation of a particular form of PDE systems, coupled parabolic PDEs with spatial dependent coefficients. This form of PDEs represent some dynamic systems such as Tubular Reactors, Diffusion in lithium-ion cells and Diffusive Gradient in Thin Films sensor. Other methods for this problem use "Backstepping" observers, in which the estimation error system is transformed into another system that is stable, reducing the problem to calculate the Kernel functions making the transformation possible. In some cases this calculation is not simple, also the simulation in real time of the observer system, that is also a PDE, can be difficult. The method presented in this thesis uses the properties of the so-called Modulating Functions in order to estimate the states. The procedure con- sists of generating an orthonormal basis of functions that can represent the state as a combination of them. Then auxiliary systems are formed from the original systems with boundary conditions that help in the simplification of the problem. Resolving these auxiliary systems, result in the calculation of the Modulating kernels. All of these steps can be made offline and do not have to be repeated. The functions are used together with the orthonormal basis in the online part, that consists of an inte- gration of a combination of the kernel functions, inputs and outputs of the system in a time window. Finally, with a matrix multiplication the coefficients for the ba- sis expansion of the state can be obtained, resulting in the desired state estimation. The present method is tested in systems that resemble the forms of the dynamics of Tubular Reactors and the performance is compared to other methods. / Diese Masterarbeit widmet sich der Zustandsschätzung einer bestimmten Art von Systemen, gekoppelten partiellen Differenzialgleichungen mit raumabhängigen Ko- effizienten. Diese besondere Form von PDEs repräsentiert einige dynamische Sys- teme wie Röhrenreaktoren, Diffusion in Lithium-Ionen-Batterien und Gradienten in dünnen Schichten. Andere Methoden für dieses Problem benutzen "Backstep- ping" Beobachter, bei denen das Schätzfehlersystem in ein anderes stabiles System transformiert wird, wodurch das Problem reduziert wird, um die Kernfunktionen zu berechnen, die die Transformation ermöglichen. In manchen Fällen ist diese Berech- nung nicht einfach. Auch die Simulation in Echtzeit des Beobachters System, das auch eine PDE ist, kann sehr schwierig sein. Die in dieser Arbeit vorgestellte Meth- ode verwendet die Eigenschaften der sogenannten Modulationsfunktionen, um die Zustände zu schätzen. Das Verfahren besteht darin, eine Orthonormalbasis von Funktionen zu erzeugen können, die den Zustand als Kombination von ihnen repräsen- tieren, dann werden Hilfssysteme gebildet von dem ursprünglichen Systemen mit Randbedingungen, die bei der Vereinfachung helfen, von dem Problem. Das Au- flösen dieser Hilfssysteme ergibt die Berechnung der modulierende Kerne. Alle diese Schritte können offline durchgeführt und müssen nicht wiederholt werden. Die Funktionen werden zusammen mit der Orthonormalbasis im Online-Teil ver- wendet. Dieser Teil besteht aus einer Integration einer Kombination der Kernfunk- tionen, Eingaben und Ausgaben des Systems in einem Zeitfenster. Schließlich kön- nen die Koeffizienten zur Basiserweiterung mit einer Matrixmultiplikation berech- net werden, was zu der gewünschte Zustandsschätzung führt. Das Verfahren wird am Beispiel der Dynamik eines Rohreaktors getestet und die Ergebnisse werden mit anderen Methoden verglichen.

Page generated in 0.0868 seconds