• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • Tagged with
  • 15
  • 15
  • 15
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dimensionamiento óptimo de sistemas fotovoltaicos bajo el marco regulatorio de la ley 20.571

Correa Herrera, Joao Michel January 2017 (has links)
Ingeniero Civil Eléctrico / Con el explosivo desarrollo de la tecnología solar fotovoltaica a nivel mundial, y con las actuales políticas eléctricas y medioambientales en el marco nacional, se hace evidente un aumento progresivo de inserción de energías limpias a la matriz energética. Bajo este escenario, como una medida a favor de la autosustentabilidad y el desarrollo de energías renovables en el país, entra en vigencia en septiembre del año 2014 la ley 20.571 o ley Net Billing , que otorga a los clientes de empresas distribuidoras el derecho a generar y consumir energía en base a fuentes renovables no convencionales y de cogeneración eficiente, e inyectar los excedentes que estos puedan generar a la red, siendo recompensados por la energía que aportan al sistema. Dentro de este contexto nace la interrogante de si es conveniente modelar sistemas fotovoltaicos bajo perfiles de consumo específicos, y si esto entrega información diferente, adicional o mayores beneficios económicos frente al análisis en base a promedios o curvas de consumo típicas Este trabajo consiste en la construcción de una herramienta que permite evaluar económicamente, calculando la tasa interna de retorno (TIR), sistemas fotovoltaicos bajo perfiles de consumo diarios y anuales, con información previa sobre los niveles de radiación, las tarifas, los costos de inversión y parámetros globales de los componentes del sistema. Con el desarrollo de esta herramienta, posteriormente se añade la opción de calcular de manera simplificada, el tamaño de sistema que maximiza la TIR o que optimiza económicamente el sistema FV. Se hace el estudio y modelamiento del perfil de consumo de 5 clientes de la región metropolitana, los que cuentan con tarifa tipo BT1 y distintas cantidades de uso de energía. Estos perfiles se utilizan para hacer los análisis de los resultados y las comparaciones entregadas por la herramienta. Finalmente se demuestra la utilidad de contar con una herramienta adaptada al sector residencial, que permita determinar la potencia de un sistema fotovoltaico que entregue los mayores beneficios a cada cliente, según su perfil de consumo.
2

Estrategias de control para mitigar los efectos de grandes variaciones de radiación solar en plantas fotovoltaicas de gran escala en SEP

Astudillo Jara, Alejandro Aladino January 2013 (has links)
Ingeniero Civil Eléctrico / La tendencia a nivel mundial de explorar nuevos medios de generación no convencionales ha permitido el desarrollo de tecnologías como la eólica o la solar. A nivel nacional la energía solar fotovoltaica (FV) ha comenzado a mostrar los primeros signos de ser una alternativa de gran potencial para el norte del país, en especial para el Sistema Interconectado del Norte Grande (SING). La energía FV se caracteriza por tener una gran variabilidad, la cual si bien puede ser bastante predecible como en amaneceres y atardeceres, también puede ser de carácter aleatoria producto de los efectos producidos por nubes. Lo anterior, sumado a las características del SING, un sistema aislado, puramente térmico y poco flexible, hace de la generación FV más que una alternativa alentadora en términos de la estabilidad del sistema una solución para la cual el sistema no está preparado. Considerando lo anterior, este trabajo se enfoca en proponer estrategias de control para plantas FV de gran escala que ayuden a disminuir el riesgo asociado a la variabilidad inherente en la generación de este tipo de tecnología. Se analizan dos estrategias, un control para el amanecer y atardecer (control A/A) el cual busca limitar las pendientes de potencia que se producen en amaneceres y atardeceres, y un control para el llamado efecto nube (control EN) que disminuya la variabilidad de la potencia de salida de una planta FV producto de disminuciones intempestivas en la radiación recibida. Ambos controles se basan en la operación deloaded de la planta FV, es decir, dejando un margen de reserva de potencia de forma tal de permitir un control de potencia en la planta. Los modelos son desarrollados en el software DIgSILENT, donde se evalúa el desempeño de los controles propuestos bajo diferentes escenarios de radiación. Los resultados muestran un comportamiento adecuado del control A/A, el cual solo es limitado por los niveles técnicos de operación del conversor y el nivel de reserva. Para el control de EN los resultados son alentadores para ciertos niveles de radiación, donde se ven disminuciones de hasta un 37% en la variabilidad de la potencia de salida en el escenario de radiación moderada con un 10% de deload. Para días con mayor nubosidad, con un aumento en el nivel de deload se logra disminuir la variabilidad de potencia en un 21% y con pérdidas de energía inferiores al 3%. El control de EN logra disminuir la variabilidad de potencia a la salida, disminuyendo así los niveles de reserva que serían necesarios en el sistema para compensar estas variaciones, producidas por fluctuaciones en la radiación. Como trabajo futuro se propone evaluar económicamente estas alternativas, contemplando las pérdidas que se generan por la operación deloaded de centrales FV, los beneficios a nivel sistema al disminuir los niveles de reserva, etc. Por otro lado, proponer un control que adapte el nivel de reserva a partir de pronósticos meteorológicos puede conseguir mejores resultados que un nivel de reserva predefinido.
3

Diseño de un disipador de calor pasivo para un panel fotovoltaico inclinado operando en el norte de Chile

Carrasco Olea, Claudio Alejandro January 2015 (has links)
Ingeniero Civil Mecánico / La expansión tecnológica que se vive en estos tiempos, motiva la búsqueda de nuevas energías para poder abastecer el gran consumo de energía que se crea día a día, es por esto, que una de las principales fuentes posibles, es la energía solar, que por medio de los paneles fotovoltaicos se puede convertir en energía eléctrica. Debido a la poca cantidad de energía solar que logra transformar en energía eléctrica, surge el problema de aumentar la eficiencia de conversión del panel fotovoltaico, donde uno de sus problemas es la elevada temperatura de operación que posee, dado que al ser menor se podría subir la eficiencia de los paneles fotovoltaicos. El estudio realizado tiene por objetivo general encontrar un disipador de calor de geometría triangular y con aletas, que pueda disminuir la diferencia de temperatura entre el panel fotovoltaico y el ambiente. Primero se encuentran las líneas de corriente del viento en un campo solar, dadas condiciones existentes en el Desierto de Atacama, luego se determina el coeficiente global de transferencia de varias geometrías de disipador triangular, para determinar la geometría del disipador de calor con mejor transferencia de calor y para finalizar se estudia la variación de aletas evaluando el coeficiente global de transferencia. Estos estudios se desarrollan por medio de software computacional, en específico, con el software Ansys CFX, un software computacional que puede aproximar las soluciones de ecuaciones de fluido y termodinámica, con las cuales se puede determinar, en un espacio de tres dimensiones, como se comportara el viento impactando el disipador de calor y poder determinar los coeficientes globales de transferencia. Como resultados obtenidos desde el trabajo realizado, se encuentra que para las geometrías triangulares evaluadas, la geometría de triangulo rectángulo posee el mejor coeficiente de transferencia y para el número de aletas se encuentra un máximo en el coeficiente global de transferencia el cual maximiza el intercambio térmico existente entre el ambiente y el disipador de calor, el que se encuentra en 222 aletas, que es el que permite el mayor descenso de temperatura entre todos los disipadores evaluados.
4

Modelamiento térmico unidimensional y transiente de un panel fotovoltaico

Moya Arrué, Cristóbal Hernán January 2016 (has links)
Ingeniero Civil Mecánico / En el transcurso de los últimos años, la generación de energía renovable, ha sido promovida por distintas naciones. En este contexto, encontramos las celdas fotovoltaicas como una de las formas de producción de energía renovable más usadas en el mundo debido a que pueden transformar directamente la radiación solar en electricidad y a la vez, pueden ser usadas en aplicaciones domésticas e industriales. Sin embargo, en su operación, solamente se puede aprovechar alrededor de un 20% de la radiación incidente, el resto se convierte en calor, por otra parte, esta eficiencia se ve disminuida cuando las temperaturas de operación aumentan. Por las razones indicadas anteriormente, la dependencia del rendimiento con la temperatura de la celda, convierte a este parámetro en uno de los más relevantes a la hora de diseñar mejoras en el desempeño de un panel fotovoltaico. El objetivo de la presente memoria es elaborar un modelo unidimensional térmico que pueda simular el comportamiento transiente de la temperatura de la celda a lo largo del día. Para el desarrollo del tema referido, se realiza un análisis teórico de la temperatura al interior de un panel fotovoltaico mediante un balance energético, es decir, definir el comportamiento de la temperatura al interior de la celda en función de la radiación incidente, pérdidas por radiación, convección y conducción. A continuación, se procede a ensamblar el modelo planteado en un software numérico con las condiciones de borde adecuadas, para posteriormente realizar el análisis térmico transiente del panel fotovoltaico. Finalmente se verificará si el modelo planteado sirve para modelar el panel fotovoltaico, para esto se compara el comportamiento térmico con modelos reportados en la literatura y mediante a datos obtenidos de una central fotovoltaica instalada en el norte de Chile. La metodología ocupada para el desarrollo de los temas indicados en el párrafo anterior son las siguientes: a) se realizan simulaciones para distintos casos hipotéticos de funcionamiento aumentando de complejidad el modelo; b) se aplica el modelo para comparar los resultados con otros modelos de la literatura y para estimar la corriente generada en un día y se verifica que predice con suficiente precisión lo observado en la realidad; c) se estudia el efecto de las variables climáticas en la temperatura de la celda y se deduce una ecuación que describe el efecto de la temperatura ambiente, velocidad de viento y la radiación sobre la temperatura de la celda; y d) se estudia el efecto de la localización del panel en distintas zonas de Chile en la temperatura de la celda.
5

Análisis de la interacción entre un panel fotovoltaico y una turbina eólica de eje vertical en un entorno urbano mediante simulaciones CFD

Saavedra Ferrada, Vicente Felipe January 2018 (has links)
Memoria para optar al título de Ingeniero Civil Mecánico / En el contexto de que el mundo esta optando por desechar la producción de energía mediante combustibles fósiles, irrumpen las energías renovables no convencionales dentro de las cuales la solar fotovoltaica y la eólica han tenido el mayor crecimiento en los últimos años. Estas energías se caracterizan por ser aprovechadas en grandes espacios abiertos los cuales son cada vez más escasos y por lo que en los últimos años los estudios van de la mano de la implementación de estas tecnologías en espacios urbanos, de lo que nace la necesidad de evaluar su desempeño bajo estas condiciones ambientales. El presente trabajo se enfoca en el estudio de un panel fotovoltaico y una turbina eólica de eje vertical tipo Savonius en el mismo espacio urbano como podría ser el techo de un edificio donde se reúnen condiciones para un buen desempeño de estas tecnologías. El principal punto a observar es la interacción entre la estela producida por el funcionamiento de la turbina, la cual acelera el viento incidente en dos zonas de vórtices de alta velocidad, y la instalación de un panel fotovoltaico en estas zonas, ya que el aumento de la velocidad del viento produce un medio de refrigeración natural para el panel fotovoltaico. Se realizan simulaciones CFD en Ansys Fluent en 2 dimensiones para obtener el perfil de velocidades promedio en las zonas de vórtices de alta velocidad producidos aguas abajo de la turbina para 5 velocidades distintas en la zona urbana y 4 posiciones distintas en la estela. Posteriormente estos perfiles son usados como condiciones de borde para un modelo en 3 dimensiones del panel fotovoltaico, de manera de comparar la temperatura promedio de celda del panel por si solo con la de un panel aguas abajo de la turbina eólica. El panel fotovoltaico es simulado mediante la implementación de una fuente de calor en el volumen de la celda, la cual es calculada mediante el balance de la energía utilizada y no utilizada al producir energía según condiciones medioambientales del lugar. Los resultados muestran que la temperatura del panel disminuye al aumentar la velocidad del viento y que al ser puesto en las zonas aprovechables aguas abajo de la turbina eólica de eje vertical la disminución de la temperatura es mayor con respecto a la del panel instalado sin turbina. Este resultado se traduce en un aumento de la eficiencia del panel fotovoltaico al ser implementado en las zonas de mayor velocidad aguas abajo de la turbina, lo que genera un aumento de la potencia generada por el panel que va desde un 0,58% hasta un 2,95% dependiendo de la velocidad del viento. El trabajo demuestra como la implementación de un sistema con las dos tecnologías estudiadas puede mejorar el desempeño del panel fotovoltaico. La factibilidad queda sujeta a un análisis del objetivo de implementación de las tecnologías, como a un análisis económico respecto a la potencia generada por el espacio usado.
6

Sistema Fotovoltaico para Aplicaciones Móviles de Tracción Eléctrica

Castillo Miranda, Juan Pablo Andrés January 2008 (has links)
El escenario energético internacional permite visualizar que el uso de la energía solar tiene fuertes perspectivas de crecimiento. En este contexto, el objetivo general de este trabajo es contribuir al desarrollo de aplicaciones móviles energizadas con recursos renovables a través de la propuesta de un modelo de sistema fotovoltaico móvil para aplicaciones en tracción eléctrica. Se busca contar con una herramienta de diseño y análisis de paneles fotovoltaicos de geometría variable, formados por distintos tipos de celdas solares. Se establece el estado del arte en tecnologías fotovoltaicas y aplicaciones móviles de tracción eléctrica que utilicen energía solar, junto con estudiar los antecedentes teóricos que explican los fenómenos relacionados directamente con la radiación solar en la Tierra y el comportamiento de celdas solares ante la radiación. Asimismo, se desarrolla e implementa un modelo de comportamiento de celdas fotovoltaicas específicas que incluya la radiación espectral. Para realizar este modelo, denominado “modelo integrado”, se consideran tres grandes bloques. El primer bloque corresponde al modelo que entrega la radiación solar para un conjunto de planos (celdas solares), el que se selecciona de la literatura especializada en el tema y atendiendo a los requerimientos específicos de aplicaciones móviles. El segundo bloque corresponde al modelo de comportamiento de un panel solar, el cual se subdivide en tres subbloques, los que corresponden al modelo térmico para una celda, el modelo de comportamiento de una celda solar y el modelo que entrega el comportamiento de un conjunto de celdas solares interconectadas. Este modelo permite caracterizar genéricamente un panel formado por celdas solares, y es implementado para las celdas específicas del auto solar Eolian I desarrollado en la Universidad de Chile en el marco de este trabajo. Para este fin, se desarrolla y utiliza una metodología de estimación de parámetros para las celdas consideradas. Finalmente, el tercer bloque del modelo integrado se desarrolla sólo para el caso de Eolian I, el que corresponde al modelamiento de su superficie y obtención de las variables que definen la posición geométrica de sus celdas. Este tercer bloque es necesario para el modelo integrado. En el caso de considerar otra superficie “irregular” es posible adaptar el procedimiento propuesto para Eolian I. Los resultados del modelo de radiación solar, indican que sistemáticamente él entrega valores mayores de radiación solar respecto de los medidos en Santiago, teniéndose diferencias entre 50[W/m2 ] y 80[W/m2 ]. A su vez, el modelo implementado para un panel solar, entrega resultados con errores inferiores al 7% en todas sus variables, excepto en el modelo térmico, en donde dicho error llega hasta un 15%, lo cual no repercute mayormente en el modelo integrado ya que el error promedio del modelo térmico es del orden de un 6%. Los resultados obtenidos mediante el uso del modelo integrado, y la ejecución de pruebas experimentales, indican que los paneles del vehículo solar Eolian I presentan graves daños, que hacen inutilizable los paneles Spectrolab DJ (aproximadamente un sexto de todo el panel). El resto del panel, formado por celdas SunPower A300, también presenta daños importantes, teniéndose que los cuatro paneles independientes entregan un 59%, 76%, 75% y 56% de la potencia esperada. Los daños del sistema de paneles fotovoltaicos hacen que su eficiencia promedio sea sólo de un 7,3%, y que se tenga una pérdida en la generación de energía diaria de un 58,9% en un día con una alta radiación solar incidente. Sin embargo, el modelo desarrollado es capaz de reproducir adecuadamente los resultados obtenidos, por lo que se proyecta como la base de desarrollo de geometrías y agrupaciones de paneles para aplicaciones de tracción móviles. Como trabajo futuro se propone considerar una corrección de la radiación solar en base a datos reales medidos y poder calcularla para un panel que esté desplazándose sobre la superficie terrestre; además, incorporar el cálculo automático de sombras sobre la superficie “irregular” del panel con la que se trabaje, poder realizar giros de ella en torno a los 3 ejes espaciales, e integrar al modelo diodos de “bypass” conectados al panel fotovoltaico. Asimismo, se propone implementar un modelo de optimización que determine para una distribución dada de celdas su conexión óptima, en base al modelo integrado desarrollado.
7

Respuesta inercial de sistemas de potencia con grandes inyecciones de generación fotovoltaica

Castillo Bugueño, Alfredo Eduardo January 2013 (has links)
Ingeniero Civil Electricista / Durante el último año ha sido posible presenciar un importante aumento en la instalación de energías renovables no convencionales a lo largo de Chile, el cual ha sido liderado por centrales eólicas. Sin embargo la energía solar no se ha quedado atrás y ya se han producido las puestas en marcha de las primeras etapas de proyectos fotovoltaicos en el sistema interconectado del norte grande (SING) de Chile. Una mirada por el servicio de evaluación ambiental (SEA) da cuenta de la gran cantidad de proyectos solares (tanto fotovoltaicos como de concentración solar) que se encuentran en carpeta. Frente a esta situación se hace necesario realizar estudios dinámicos de manera de enfrentar de manera correcta la entrada de este tipo de energías, sobre todo en un sistema con las características del SING. Peculiaridades, tanto del parque generador como de la demanda y control de frecuencia, lo hacen un sistema débil y poco flexible. En base a lo anterior, este trabajo se enfoca en estudiar la estabilidad de frecuencia del SING proyectado al 2020 frente a distintos escenarios de penetración fotovoltaica. Además se incluye un método de incorporación de respuesta inercial mediante control de conversor, el cual permite a los generadores solares participar con respuesta inercial frente a contingencias. El método utilizado consiste en realizar una operación deloaded de la central fotovoltaica y luego un control droop de manera que su generación de potencia activa sea sensible a cambios en la frecuencia del sistema. Se realiza un estudio comparativo para tres niveles de penetración fotovoltaica mediante el software DigSILENT. Para esto se modeló el sistema y cada uno de sus componentes, además de las centrales fotovoltaicas y el control antes mencionado. Los resultados obtenidos muestran una notable mejora del desempeño del sistema al incluir el control desarrollado en todos los escenarios. En particular para el caso de mayor penetración se observa una mejora de un 30% para los indicadores evaluados, en comparación al caso sin respuesta inercial por parte de las centrales fotovoltaicas. La mejora que significa la incorporación del control disminuye conforme la penetración es menor. Se observa como la respuesta de parte de estas centrales es más rápida que las convencionales, lo que adelanta la respuesta del sistema en el tiempo. Las simulaciones muestran, a su vez, que el sistema está bien preparado para recibir una penetración pequeña (8%) de este tipo de energía sin incluir controles ni métodos de incorporación de respuesta inercial.
8

Plan de negocios para una empresa instaladora de paneles fotovoltaicos

Toro Reyes, Felipe Andrés January 2018 (has links)
Magíster en Gestión y Dirección de Empresas / Este trabajo de tesis tiene como objetivo diseñar un Plan de Negocios para una empresa que realice la instalación y mantención de sistemas fotovoltaicos, cuyo fin es crear valor al segmento de clientes del rubro industrial y comercial. Los continuos avances en la tecnología fotovoltaica, regulaciones a favor de las energías renovables no convencionales, la condición solar del país y la mayor conciencia por parte de la ciudadanía en el uso de energías limpias, contribuyen a evaluar la creación de una empresa que se dedique a la instalación y mantención de sistemas fotovoltaicos. La metodología comienza con analizar el sector de la industria, identificando los clientes potenciales, competencia, segmentación, entre otros. Luego, mediante un análisis PEST se detectan los factores más relevantes del entorno. A continuación, por medio de un análisis de las cinco fuerzas de Porter, se determina el nivel de competencia de la industria. Para identificar la propuesta de valor del Negocio, se utiliza el modelo Canvas de Alexander Osterwalder. Una vez identificada la propuesta de valor, se desarrolla el plan de marketing, plan organizacional, plan operacional y el plan financiero. Uno de los factores críticos del Modelo de Negocios, es la definición de la propuesta de valor, la que consiste en resaltar el beneficio económico de la instalación fotovoltaica (FV) y de la creación de una imagen amigable con el medio ambiente. Del Plan de Marketing, se obtiene una lista de potenciales clientes, los cuales se asignan y distribuyen por área geográfica a la fuerza de ventas. El Plan de ventas considera un aumento paulatino de las instalaciones FV y el primer año corresponde a promocionar la solución y beneficios a los clientes. La evaluación económica del Negocio demuestra que se trata de un negocio rentable, obteniendo un VAN de 130 MMUS$ y una TIR del 60%; para un periodo de evaluación de 5 años y una tasa de descuento del 17,5%. Sin embargo, para que sea exitoso, se requiere que la propuesta de valor sea transmitida por la fuerza de ventas. La recomendación es implementar este plan de negocios, debido a las condiciones del mercado actual y regulación vigente, se observa una gran oportunidad para desarrollar este Negocio. Como trabajo futuro, se recomienda ahondar en la factibilidad de importar y certificar parte del Suministro.
9

Proyecto de central fotovoltaica-eólica para un máximo aprovechamiento de energía renovable

Bassi Zepeda, Pamela Andrea January 2013 (has links)
Ingeniera Civil Eléctrica / Este trabajo tiene como objetivo principal determinar un lugar que posea un alto potencial eólico y una alta radiación solar, para obtener un máximo aprovechamiento de estas energías renovables mediante una central mixta fotovoltaica-eólica. Para llevar a cabo este proyecto, primero se dan los conceptos básicos de energía solar fotovoltaica y energía eólica, abarcando sus generalidades, características, consideraciones, las centrales que utilizan estas energías y sus aplicaciones actuales. Se proponen y determinan distintos lugares adecuados para el emplazamiento de la central mixta fotovoltaica-eólica, haciendo un catastro de radiación solar y potencial eólico en cada uno de estos lugares, utilizando las herramientas Explorador Solar y Explorador Eólico del Departamento de Geofísica de la Universidad de Chile, con los cuales se encuentra que existen tres lugares óptimos, siendo éstos Calama, Taltal y Vicuña. Se determina, finalmente, mediante superposición de radiación y viento, que el mejor lugar se ubica en Calama, donde se ha considerado como una buena opción la localidad de San Francisco de Chiu Chiu para el emplazamiento de la central mixta fotovoltaica-eólica. Se procede con el desarrollo del proyecto utilizando como supuesto que la demanda de energía de San Francisco de Chiu Chiu se comporta similar a la demanda de energía de la localidad de Ollagüe, de la cual se tiene los datos gracias a un estudio del Centro de Energía de la Facultad de Ciencias Físicas y Matemáticas de la Universidad de Chile (CE-FCFM). Se obtiene, así, una demanda aproximada para San Francisco de Chiu Chiu, lo que permite dimensionar la central eólica y la central fotovoltaica de la central mixta, la cual operará aislada del Sistema Interconectado. Se realiza una evaluación económica de la central mixta, considerando la inversión inicial y el costo de operación, obteniéndose un aproximado del costo total, con lo cual se realiza una comparación con la situación actual del poblado, que es obtener energía mediante empresas distribuidoras de energía. Finalmente, se expresan las conclusiones del proyecto realizando análisis de resultados y de sensibilidad, considerando el trabajo futuro y el aporte de este trabajo de memoria para la sociedad.
10

Determinación de reservas en centrales fotovoltaicas desde un punto de vista técnico económico mediante estudios de predespacho

Quintanilla González, Patrick José January 2014 (has links)
Ingeniero Civil Eléctrico / Chile vive un escenario energético bastante complejo. El país posee una matriz poco diversificada, cara, contaminante y depende fuertemente de combustibles fósiles importados. A causa de ello, distintos sectores han debatido la correcta forma de mejorar este panorama. Pese a que no existe un consenso en cuales mecanismos utilizar (desarrollo hidro-térmico, eficiencia energética, etc) para lograr un adecuado desarrollo energético, estos sectores coinciden en el diagnóstico y en la necesidad imperiosa de aumentar la participación ERNC. Chile ya ha incursionado de manera incipiente en el desarrollo ERNC, sobre todo en el sector eólico. Sin embargo, la energía solar no se queda atrás, y se augura un futuro provisorio en términos de sus costos, retornos, factibilidad técnica y principalmente, permitiría hacer uso del gran potencial solar que Chile posee. El presente trabajo tiene por objetivo encontrar niveles de reserva óptimos a mantener en las centrales fotovoltaicas para determinados niveles de penetración, a fin de determinar un set de reglas que apoyen a los operadores de sistema a decidir cuándo exigir capacidades de regulación para las centrales FV. El estudio se realiza mediante la resolución del problema de predespacho para el SING proyectado al 2020 y considera las 8760 horas del año y cuatro escenarios de penetración fotovoltaica, 5 %, 10 %, 15% y 20 %. Para cada uno de estos escenarios se evaluan seis métodos de asignación de reserva en centrales FV basados en la operación en deload de las centrales. Estos métodos son: Asignación por predespacho, operación deloaded fija en 6 %, 8 %, 10% y 12 %, y finalmente operación deloaded variable en función del nivel de penetración horaria. Los resultados obtenidos muestran que al aumentar el porcentage de deload fijo exigido, el sistema opera a mayores costos. Sin embargo, la operación deloaded variable mostró otorgar una cantidad de reserva solar significativa mientras que al mismo tiempo es una opción con un mejor desempeño económico en comparación a los métodos de asignación fija. Por otra parte, la energía solar no inyectada se valoriza al costo marginal del sistema. Este costo de oportunidad presenta un comportamiento parabólico, cuyo máximo se alcanza para distintos niveles de penetración dependiendo del tipo de asignación de reserva escogido. A su vez, este resultado muestra el impacto que la penetración fotovoltaica tiene en la reducción de los costos marginales del sistema.

Page generated in 0.0994 seconds