• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 26
  • 26
  • 26
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The effects of prebreaking on the efficiency of hammermill particle size reduction systems in feed manufacturing

Scholten, Roger L. January 1985 (has links)
Call number: LD2668 .T4 1985 S364 / Master of Science
22

Microwave pretreatment of a low grade copper ore to enhance milling performance and liberation

Scott, Grant 03 1900 (has links)
Thesis (MScEng (Process Engineering))--University of Stellenbosch, 2006. / As easy to mine high grade ore bodies are being depleted, many mining industries are experiencing an increasing need to process lower grade ores, and thus the high costs involved in the mineral recovery from these ores (of which comminution energy costs are a large component) are of major concern. It has been estimated that up to 70% of the total energy consumption in mineral processing is used up by comminution processes, which characteristically may have efficiencies of less than 0.1% in terms of the transfer of electrical energy into particle breakage. In many cases, very fine grinding is required to liberate the valuable inclusions in such low grade ores, which also leads to slimes losses of valuable minerals due to the inefficiencies of recovery methods in the ultra-fine size ranges. For many years the use of thermal pretreatment has been suggested as a way to decrease the costs of size reduction, and improve the liberation of valuable minerals in ores to aid later beneficiation technologies, but it was not until exploration into the use of microwaves to selectively heat only some of the minerals in ores, that this form of treatment became economically viable. A low grade copper ore from Palabora was subjected to microwave treatment and then tested for ore strength in a laboratory rod mill, using the developing cumulative size distributions of the rod mill products with time to quantitatively determine the effects of microwave treatment on ore strength. It was seen that after microwave treatment the ore responded more readily to milling, producing a finer grind than for untreated ore at every measured time interval of milling. From this data, comminution models were created to describe the grinding of this ore in various flowsheet simulations. An investigation was also performed to determine the effect of the application of microwave treatment on the liberation of minerals, due to the preferential breakage induced along grain boundaries during the selective thermal expansion of certain mineral inclusions in ores during microwave treatment. To ensure consistency between results for microwave treated and untreated material, it was decided to use the same grinding time for both when preparing ore for the next stage of testing. A grinding time was chosen which would produce an 80% passing size of 800 μm for the microwave treated ore. This time was determined from the previous grinding tests and was found to be approximately 16 minutes. After particle size classification of the mill products through sieving, a size range suitable for gravity separation processes was chosen for sink-float testing, with the aim of investigating whether microwave treatment had liberated enough gangue material at large particle sizes to offer the possibility of removing this hard gangue material early on in the process, before costly fine grinding is required. XRF analysis of the products showed little difference in recoveries of gangue material to the floats between treated and untreated material, and that while most of the copper reported to the sinks, that some of the copper was always entrained in the floats. These losses of valuable minerals to the gravity tailings will lead to overall losses in copper mineral recovery from the plant. QEMSCAN® analysis showed that there was a significant increase in mineral liberation in the size ranges associated with flotation as a result of the microwave treatment. An increase in liberation of the copper minerals which are easily recovered by flotation (i.e. chalcopyrite, cubanite, bornite, chalcocite and digenite) of 8.4% over that of the untreated ore was seen. This indicates that significant increases in copper recovery are possible after microwave treatment, and also that less fine grinding is then required to extract the valuable minerals from the ore, which leads to a reduction in loss of these valuable minerals to slimes. Palabora Mining Company supplied enough data on their plant operations from 1989 to enable models to be built to describe the operation of the mills and classifiers used in their comminution circuit. This data, together with the work performed to compare the performance of microwave treated and untreated Palabora ore in both milling and liberation (which allowed for basic recovery models to be built), allowed flowsheet simulations of the plant operations. Simulations of the plant after the addition of microwave pretreatment of the ore showed that the total energy used in comminuting the ore (including that of the microwave treatment) to the correct size distribution for mineral recovery by flotation were reduced by 19% from that required for untreated ore, and was mainly due to reductions in the circulating loads over the mills. By exploiting the greater milling capacity allowed for by these lower circulating loads, it was shown that it was theoretically possible to obtain increases of up to 46% in maximum throughput after microwave treatment, while retaining the same final grind size in the feed sent to flotation as is required for untreated ore. The addition of gravity separation processes to remove liberated gangue material from the comminution circuit early on, led to further savings in energy and also grinding media, and also decreased the requirements for flotation reagents and smelter fuel later on in the flowsheet. Unfortunately, the losses of entrained copper to the gravity separation tailings were such that overall economic losses were incurred by the operation. It was concluded that when dealing with low grade ores, only the implementation of very efficient and mineral specific separation technologies could make the removal of gangue material at large particle sizes (i.e. > 1 mm) viable. Economic analyses based on the simulations of the plant under various operating conditions showed potential increases in plant profitability after the addition of microwave pretreatment of the ore before milling, and were reported using net present value (NPV) calculations for the plant over a 10 year period with monetary values discounted at 20%. When operating under the same conditions and throughput as in the 1989 data provided by Palabora Mining Company, an increase in the NPV of the plant of 23% over that for the reported operation was seen after the addition of microwave pretreatment, and an increase of 72% in NPV given a 10% increase in throughput which is made possible by microwave pretreatment of the ore. In real money terms, after 10 years of operation the increase in NPV of the plant with the addition of microwave pretreatment of the ore was seen to be around R259 million (under the conditions reported for the plant operation in 1989), and around R795 million if the 10% increase in throughput which is only made possible by microwave pretreatment is realized. Current conditions at Palabora are very different from those supplied by the plant for the operation in 1989, however, as the mining operation has since been moved underground resulting in the throughput of the plant being greatly reduced, with the consequence that the plant is currently operating at a loss. Palabora mining company posted a net loss of R158 million over the 6 months leading up to June 2004, while an economic analysis of the proposed addition of microwave pretreatment of the ore at an increased throughput of 10% made possible by this treatment, indicated that a loss of only R138 million would have been incurred over the same 6 month period had this been implemented. Thus, while benefits from the introduction of microwave pretreatment of the ore before milling can still be seen under the operating conditions of the plant during the time period investigated, these alone would not have be able to bring the plant to profitable operation.
23

A study of comminution in a vertical stirred ball mill.

Tuzun, Mustafa Asim. January 1993 (has links)
A 20 litre experimental batch and continuous test rig and 5 litre batch and 50 litre continuous test rigs for stirred ball milling were built at the University of Natal and Mintek respectively. All the mills featured a grinding vessel with a central shaft equipped with pins and a torque measurement system. A washed chrome sand from the Bushveld Igneous Complex was used for the grinding experiments. Particle size analysis of products was performed using standard sieves and a Malvern Particle Sizer. Batch tests were run in the 20 litre stirred ball mill to achieve efficient grinding conditions. The effects of grinding conditions such as pulp density, media size, media density and shaft rotation speed and mill design parameters such as ball load, pin spacing and pin diameter on product size, power consumption and media wear were studied. It has been shown that the median size of the product can be calculated by the Charles' Energy-Size Equation. The stirred ball mill has been found to be more energy efficient than the tumbling ball mill. An energy reduction of 50% was possible for a product size of 6 microns when the stirred ball mill was employed instead of the tumbling ball mill. The energy input per ton of grinding media in the stirred ball mill could be 10 times higher than for the tumbling ball mill. Although during coarse grinds the media wear was higher in the stirred ball mill than in the tumbling mill, it became less so as grinding proceeded and for a product median size of 4.8 microns it was the same. Using a 5 litre batch mill, an experimental programme was designed to study the comminution characteristics of the stirred mill. A factorial design was prepared with the following parameters, which influence grinding in the stirred ball mill: pulp density, pin tip velocity and ball density and size. The energy required for grinding the chromite sand in the stirred ball mill was determined by the use of Charles' Equation. The findings were in agreement with the results predicted by this equation. It was shown that the Rosin-Rammler size distribution equation was a suitable procedure for presenting and comparing grinding data obtained from the stirred ball mill. The factors that had the greatest effect on grindability were, in order of importance: ball size, pin tip velocity and ball density. Interactions between grinding parameters were negligible. results implied that accurate predictions can be made to determine the grinding conditions required to achieve a desired product specification. An attempt was made to study the grinding kinetics the chromite are using the mass population·balance model. Grinding tests were performed with two mono size fractions ·53+38 and -38+25 microns and natural feed ·100 microns using various pin tip velocities, ball densities and within the normal stirred ball milling operating range. relationship between the ball diameter and the particle was explained by the "angle of nip" theory which applied for roller crushers. It was shown that the particle giving the maximum breakage rate was directly proportional to the ball diameter. Estimated grinding kinetic parameters from monosize provided a good basis for predictions of natural feed. However, the breakage rate obtained from monosize tests appeared to be lower than those from the natural feed It was found that if the selection and breakage functions were determined by monosize tests, it was possible to modify selection function parameters by back-calculation which gave the best fit to the natural feed size. A good correlation was obtained between the experimental and product distributions using a population-balance model. The links between the empirical model combining Charles' and Rosin-Rammler equations and the first-order batch grinding equation were also shown. The stirred ball mills were operated in batch and continuous mode. The median size of the products from the batch stirred ball mill experiments closely matched those of the continuous grinding experiments under similar grinding conditions. Using a salt solution as a tracer material, an attempt was made to estimate the residence time distribution based on a simplified analysis of the motion of the water in tile mill. The current scale-up methods for the stirred ball mill are discussed. A torque model was developed for given shaft geometry and ball relating the power rements of the stirred ball mill to the following prime design and operating parameters : mill diameter, mill height, pin tip velocity and effective density of the mill load. The basic assumptions underlying the model were that the mill content behaved as a fluidised bed, consequently a P effg h type model for the pressure was applied throughout the grinding media bed the effective charge velocity was proportional to the pin tip velocity. It was found that pin spacing, pin diameter and ball diameter significantly affected the mill torque. A semi-empirical torque model was derived to include these parameters. The relationships formulated from these models were shown to be in excellent agreement with experimental results. / Thesis (Ph.D.)-University of Natal, Durban, 1993.
24

Beneficiamento primário de Passiflora Incarnata L., para obtenção de vitexina por cromatografia líquida de ultra eficiência em Botucatu (SP) /

Gonçalves, Maiara Cristina, 1987. January 2017 (has links)
Orientador: Aloísio Costa Sampaio / Coorientador: Filipe Pereira Giardini Bonfim / Banca: Evelize de Fátima Saraiva David / Banca: Fátima Chechetto / Resumo: Objetivo da pesquisa foi avaliar o processo de beneficiamento primário de Passiflora incarnata realizado no município de Botucatu com a inclusão de um sistema de monitoramento da temperatura e umidade de baixo custo, por meio de um software open-source em um secador artesanal á lenha e a avaliação do processamento póscolheita da biomassa de P. incarnata, quantificando teor de vitexina por CLUE-EM. O trabalho foi desenvolvido no sítio Dois Irmãos, entre as coordenadas geográficas, latitude 22º56'49,27" Sul e longitude 48º34'42,80" Oeste, aos 765 m de altitude no distrito de Rubião Júnior, bairro rural Chaparral. Acompanhou-se a colheita e o beneficiamento de P. incarnata durante dois anos (2015 e 2016). A metodologia utilizada foi a de observação direta. A estrutura do secador confeccionado pelo produtor familiar de alvenaria (barro-cimento), reutilizando uma construção que já existia na área. Para a avaliação do teor de vitexina foram escolhidos e marcados seis indivíduos de P. incarnata e coletados durante as três épocas de colheita de 2016 (abril, setembro e novembro) e três tratamentos prévios à secagem de fragmentação: parte aérea não fragmentada (NF); fragmentada média, de 1 cm a 5 cm (FM), e fragmentada pequena, abaixo de 0,5 cm (FP). As análises de CLUE-EM foram realizadas em espectrômetro de massas Accela (Thermo Scientific® ) modelo LCQ Fleet com Ion Trap 3D via análise de injeção de fluxo (FIA) e ionização por eletronebulização com separações cromatográficas realiza... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: The objective of this research was to evaluate the process of primary processing of Passiflora incarnata in a low cost temperature and humidity monitoring system, which was carried out in Botucatu by means of an open-source software in a wood-fired drier and the evaluation of the post-harvest processing of the P. incarnata biomass by the vitexin content by UHPLC-MS with a data metabolic approach.The work was developed in Dois Irmãos, between the geographical coordinates, latitude 22º56'49.27 "South and longitude 48º34'42.80" West, at 765m altitude in the district of Rubião Júnior, rural district Chaparral. The experiment was conducted with different seasons of harvest and beneficiation of P. incarnata during two years (2015 and 2016).The methodology used was direct observation and photographic record. The structure of the dryer made by the producer was masonry (clay-cement), reused a construction that already existed in the area. Six individuals of P. incarnata were used to evaluate the vitexin content during the three harvest seasons in 2016 (april, september and november) and three treatments prior to fragmentation drying: nonfragmented aerial part (NF); Fragmented medium from 1 cm to 5 cm (FM) and small fragmented, below 0.5 cm (FS). The UHPLC-MS analysis was performed on an Accela mass spectrometer (Thermo Scientific ®) LCQ Fleet model with Ion Trap 3D via flow injection analysis (FIA) and electrospray ionization with reverse phase (C18) column chromatographic separations and the mobile phase composed of a mixture of MeOH:H2O. The dehydration of the shoot of the wild passion fruit occurred for twenty two and a half hours, the relative humidity reached at 73.8% (maximum) and 9.6% (minimum), the temperature kept between 53.5 and 20.9° C. With the dehydration process the internal temperature of dryer kept above of ambient temperature, whiule the air relative humidity stayed below ... / Mestre
25

The effect of ball mill operating parameters on mineral liberation

Rojas, Hector E. January 1989 (has links)
In previous studies, the analysis of ball mill operating parameters and their effects on breakage phenomena has been limited to homogeneous materials. Though these studies have proven to be an asset in predictions of product size distributions and mill scale-up, they have not addressed the primary role of grinding, i.e. liberation. The present investigation analyzes the effect of ball mill operating parameters on the breakage rates of both liberated and composite material. The operating parameters studied include mill rotational speed, ball size, mill charge, and wet versus dry grinding. Breakage rates have been determined experimentally utilizing a SEM-IPS image analyzer. The mineral sample used was acquired from ASARCO's Young Mine which is located in Jefferson City Tennessee. It was a binary ore consisting of sphalerite and dolomite. Batch grinding experiments were conducted to provide breakage rates for the various composition classes. Breakage rates were then normalized with respect to energy to see if the changes in breakage rates associated with mill operating parameters were due to changes in breakage kinetics, or simply a function of energy input. The energy normalized data indicates that the free dolomite breakage rates tend to normalize with respect to energy in the case of varying interstitial fillings. Furthermore, changes in mill rotational speed tend to provide energy normalizable breakage rates for both free dolomite and sphalerite. In all other cases, analysis of the breakage rates and energy-specific breakage rates indicate that a change in breakage kinetics may be occurring. In general, particles containing a high proportion of sphalerite are more apt to break under impact conditions. On the other hand, particles containing a large proportion of dolomite were found to prefer attrition breakage conditions. / Master of Science / incomplete_metadata
26

Evaluating the effects of radio-frequency treatment of rocks: textural changes and implications for rock comminution

Swart, Arthur James 12 1900 (has links)
D. Tech. (Engineering, Department Electronic Engineering, Faculty of Engineering and Technology), Vaal University of Technolog / Ore, from a mining operation, goes through a process that separates the valuable minerals from the gangue (waste material). This process usually involves crushing, milling, separation and extraction where the gangue is usually discarded in tailings piles. Current physical methods used for crushing of rocks in the mineral processing industry result in erratic breakages that do not efficiently liberate the economically valuable minerals. Research studies have found that the rock comminution and mineral liberation can be enhanced through various electrical treatment techniques, including pulsed power, ultrasound and microwave. These electrical treatment techniques each have their own advantages and disadvantages which are discussed in this dissertation. However, this research proposes a new technique in an attempt to improve the rock comminution process. The main purpose of this research is to evaluate the effect that RF power exerts on rock samples, with particular focus on textural changes. Four valuable scientific contributions to the fields of metallurgical and electrical engineering were made in this regard. Firstly, a new technique for the treatment of rock samples using RF heating is substantiated. The effect of RF power on textural changes of the rocks is evident in their surface temperature rise, where the RF heating of dole-rite (JSA) and marble (JSB, JS 1 and JS2) resulted in surface temperatures of approximately 100 °C within two minutes of treatment. A particle screening analysis of particles obtained form a swing-pot mill of both the untreated (not exposed to RF power) and treated (exposed to RF power) rock samples were performed to ascertain if the treated samples' size had changed. Two samples (JSA and JSD) revealed a notable change in their particle size distribution. The fact that the percentage of larger sized particles increased (from 38 J..Lm to 90 J..Lffi as seen in Chapter 6) suggests that the rock was strengthened rather than weakened. Secondly, an innovative coupling technique (using a parallel-plate capacitor with dimensions of 28 x 47 mm) to connect rock samples to high powered RF electronic equipment is described. The feasibility of this technique is confirmed by repeated correlated measurements taken on a vector voltmeter and network analyser. Low SWR readings obtained from an inline RF Wattmeter in a practical setup also proves the viability of the matching network used in the coupling technique. Thirdly, anoriginal coupling coefficient (81.58 x 10-3) for the parallel-plate capacitor is presented. This value may be used in similar sized capacitors to determine the specific heat capacity of dielectric materials. However, the value of the coupling coefficient was only verified for seven (relatively dark in surface colour) out of the ten rock samples. Therefore, this coupling coefficient may hold true for all dark coloured rock samples, as it represents the coupling of energy between the parallel-plate capacitor and the rock sample. Finally,this research defines the mathematical models for 10 rock samples for the VHF range of frequencies (30 - 300 MHz), providing unique phase angle to resonance equations for each sample. These equations can be used with each specific rock to determine the resonating frequency where the maximum current flows and the minimum resistance is present. Evaluating the effects of RF power treatment on rocks has brought to light that mineral grain boundaries within specified rock samples are not significantly weakened by RF treatment. This was firstly confirmed by the similar electrical properties of the untreated and treated samples, where consistent values for the resonating frequency were obtained from the network analyser. Secondly, the SEM analysis of the untreated and treated rock samples revealed no significant changes in the form of fractures or breakages along the mineral grain boundaries. Photomicrographs of the thin sections of all ten rock samples were used in this analysis. The particle size distribution of both samples further revealed no weakening or softening of the rock, as the percentage of smaller sized particles did not increase in the treated samples. It may therefore be stated that treating rock samples with RF power within the VHF range will not significantly improve rock comminution and mineral liberation.

Page generated in 0.1624 seconds