• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Size-Weight Scaling in Healthy Young and Old Adults

Capper, Alyssa Lynn 01 July 2013 (has links)
Visual analysis of an object's size can be used to determine the lifting forces we program to lift the object so that the resulting movements achieve the goals of the lift. These forces are scaled or specified prior to the object moving, that is, before sensory feedback information about the object's weight is available. Sensorimotor memories are relied on to provide relevant information about an object's density and weight if the object was previously manipulated. It is well established that young adults accurately scale their forces based on visual size cues. The purpose of this study was to determine if old adults scale their forces to the size of the object or if they rely on sensorimotor memory of the previous object's weight. There are reports of impaired visuomotor programing for grasp and lift in old adults. In the present study old and young subjects were required to lift four different sized bottles of constant density from a force plate and then place the object on a shelf. Two experiments were performed. Experiment one featured blocks of lifts for three bottles in the following order: large, small and medium. Experiment two took place fifteen minutes after experiment one and featured a bottle slightly larger than the medium bottle used at the end of the experiment one. The second experiment addressed whether imperceptible changes in size cause changes in predictive force scaling. Peak load force rate in the first force pulse (prior to lift-off) was measured for each lift of the objects with the focus being on the initial and last lift of each bottle. Both experiments presented a significant effect for bottle size on lift force rates. This result was found regardless of age. It provides additional support that young adults accurately scale their lift force rate based on the visual size cues of the object. Old adults also demonstrated scaling of their lift force rates based on bottle size which failed to support the hypothesis that old adults would merely reproduce their lift force rates from the previous lift with a different object. While both young and old scale lift forces to object size, the old demonstrated a trend for utilizing high lift force rates throughout the experiment as well as greater differences in lift force rate between the initial lift with an object and the final lift with the same object. Most subjects utilized a target strategy in which they produced a single peak lift force rate pulse. This is indicative of a neural representation of the weight of the object being utilized to program the lift force rate. The remaining subjects exhibited a probing strategy that features several step-wise increases in lift force rate until the object is lifted off. This represents a more cautious approach to lifting novel objects. Our results indicate that old adults, much like young adults, are able to scale their forces based on visual size cues.

Page generated in 0.0481 seconds