• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A therapeutic approach for the skeletal muscle a-actin based congenital myopathies

Ravenscroft, Gianina January 2009 (has links)
[Truncated abstract] Mutations in the skeletal muscle -actin gene (ACTA1) have been shown to be one cause of a broad group of muscle disorders all termed the congenital myopathies. Over 170 different mutations have now been identified across all 6 coding exons of ACTA1 in patients presenting with muscle weakness and any one or more of the following histopathological features: nemaline rods, intranuclear rods, fibre-type disproportion, excess of thin filaments and central cores. While the identification of the causative gene has been of great comfort for affected patients and their families, with pre-natal genetic testing becoming available, the ultimate aim is to develop a therapy for these disorders. Of the therapies currently being explored for the muscular dystrophies, up-regulation of an alternative gene seemed to be one of the most promising avenues for treatment of the ACTA1 diseases. Up-regulation of utrophin, the foetal homologue of dystrophin, has been shown to be a promising therapy for the treatment of Duchenne muscular dystrophy. The main aim of my research was to determine whether up-regulation of cardiac -actin, the predominant -actin expressed in foetal skeletal muscle and in the adult heart, could be used as a therapy for the ACTA1 diseases. A proof-of-concept experiment was performed whereby skeletal muscle -actin knock-out (KO) mice (all of which die by postnatal day 9) were crossed with transgenic mice over-expressing cardiac -actin (known as Coco mice) in postnatal skeletal muscle. ... While patients that are ACTA1 nulls have been identified in a number of mainly consanguineous populations, the majority of ACTA1 mutations result in dominant disease in which the mutant protein interferes with the function of the wild-type skeletal muscle -actin. Research described in this thesis also focuses on characterizing two transgenic mouse models of dominant ACTA1 disease at the ultra-structural, cellular and functional level; this is the first step towards a proof-of-concept experiment to determine whether cardiac -actin up-regulation can dilute out the pathogenesis of dominant ACTA1 disease. It has long been noted that patients with ACTA1 disease do not have ophthalmoplegia, even in the most-severely affected individuals. Protein analysis performed on extraocular muscle (EOM) biopsies obtained from humans, sheep and pigs showed that the EOMs co-express cardiac and skeletal muscle -actin, with cardiac -actin comprising 70 % of the striated -actin pool. Thus we propose that sparing of the EOMs in ACTA1 disease is at least in part due to cardiac -actin diluting out the pathogenesis associated with expression of the mutant skeletal muscle -actin. This finding provides further support for the hypothesis that dilution of mutant skeletal muscle -actin in dominant ACTA1 disease by up-regulation of cardiac -actin may be a viable therapy for this group of devastating muscle diseases. The research contained herein has advanced the understanding of the pathobiology of skeletal muscle -actin diseases and provides strong evidence in support of cardiac -actin up-regulation as a promising therapy for these diseases.

Page generated in 0.0704 seconds