• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Finite Element Analysis of and Multiscale Skeletal Tissue Mechanics Concerning a Single Dental Implant Site

Sego, Timothy James January 2016 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Finite element analysis (FEA) in implantology is performed in design applications concerning the complex topology of an implant, according to theoretical assumptions about and clinical data concerning the biomechanical nature of skeletal tissue. Implants are placed in topologically and physiologically complex sites, and major disagreement exists in literature about various aspects concerning their modeling and analysis. Current research seeks to improve the implementation of an implant by the use of short implants, which negate the necessity of additional surgical procedures in regions of limited bone height. However, short implants with large crown heights introduce biomechanical complications associated with increased stress and strain distributions in skeletal tissue, which may cause bone loss and implant failure. The short implant is characterized by the geometric ratio of the crown height to the implant length, called the crown-to-implant (C/I) ratio. In this work nonlinear FEA was performed to investigate the effects and significance of the C/I ratio on long-term implant stability. A finite element model was developed according to literature, and emulation of previous research and comparison of reported results were performed. Comparison of results demonstrated significant sources of error in previous research, which are argued to be caused by mesh-dependency from common model idealizations in literature. A convergence test was then performed, which verified the mesh-dependency of results and challenged the reliability of some common model assumptions and methods of analysis in literature. A 16-point design of experiments was then performed to evaluate the significance and influence of the C/I ratio, considering a proposed novel method for evaluating results and predicting long-term stability. Analysis of results demonstrated that the C/I ratio augments the inherent biomechanical effects of an implant design, particularly overloading strain concentrations at implant interface features. The use of short implants with high C/I ratios is determined to be inadvisable, considering the physiological response of tissue to strain distributions and biological context. A novel, multiscale material model is then proposed to describe the short-term accumulation of damage and biomechanical remodeling response in orthotropic skeletal tissue, as a potential solution to the mesh-dependency of results.
2

Quantitative assessment and mechanical consequences of bone density and microstructure in hip osteoarthritis

Auger, Joshua 30 May 2023 (has links)
Osteoarthritis (OA) is a chronic, painful, and currently incurable disease characterized by structural deterioration and loss of function of synovial joints. OA is known to involve profound changes in bone density and microstructure near to, and even distal to, the joint. The prevailing view is that these changes in density and microstructure serve to stiffen the subchondral region thereby altering the mechanical environment (stresses and strains) within the epiphyseal and metaphyseal bone, and that these alterations trigger the aberrant cellular signaling and tissue damage characteristic of the progression of OA. Critically, however, these alterations in mechanical environment have never been well documented in a quantitative fashion in hip OA. Separately, although OA is generally thought to be inversely associated with fragility fracture, recent data challenge this idea and suggest that OA may actually modulate which regions of the proximal femur are at risk of fracture. Therefore, the goal of this work was to provide a spatial assessment of bone density and microstructure in hip OA and then examine the mechanical consequences of these OA-related abnormalities throughout the proximal femur. First, micro-computed tomography and data-driven computational anatomy were used to examine 3-D maps of the distribution of bone density and microstructure in human femoral neck samples with increasing severity of radiographic OA, providing evidence of the heterogeneous and multi-faceted changes in hip OA and discussion of the implications for OA progression and fracture risk. Second, the feasibility of proton density-weighted MRI in image-based finite element (FE) modeling, to examine stress, strain, and risk of failure in the proximal femur under sideways fall, was assessed by comparison to the current standard of CT-based FE modeling. Third, phantom-less calibration for CT-based FE modeling was used with clinically available pre-operative patient scans to assess bone strength and failure risk of the proximal femur in hip OA. Overall, the results of this work provide a rich, quantitative definition of the ways in which the bone mechanical environment under traumatic loading differ in association with hip OA, and then highlight the potential for clinical image-based FE methods to be used opportunistically to assess bone strength and failure risk at the hip. This work is significant because it directly tests the long-standing premise that OA is associated with changes in the mechanical environment of the bone tissue in ways that are impactful for OA progression; further, this work examines how these changes may influence risk of hip fracture. The results can be used to identify mechanistic predictors of OA progression, to inform development of bone-targeting treatments for OA, and to more broadly understand bone damage and fracture in this population.

Page generated in 0.0841 seconds