Spelling suggestions: "subject:"skelettmuskelatrophie"" "subject:"skelettmuskelbiopsien""
1 |
The function of TGF-beta1 in ICUAW and the characterization of Sfrp2, a TGF-beta1 target, in skeletal muscle atrophyZhu, Xiaoxi 08 January 2015 (has links)
Transforming growth factor beta 1 (TGF-beta1) ist ein multifunktionales Zytokin, welches eine Rolle in der Sepsis und in der Sepsis-induzierten Myopathie spielen könnte. Weiterhin könnten erhöhte TGF-beta1-Level zur Muskelschwäche, die mit der Intensivpflege assoziiert ist (engl. intensiv care unit-acquired weakness, ICUAW), beitragen. Der TGF-beta1- Signalweg wurde in Skelettmuskelbiopsien von ICUAW-Patienten heraufreguliert. Secreted frizzled related protein 2 (SFRP2) wurde in einer Gen-Set-Anreicherungsanalyse als das am höchsten regulierte Gen identifiziert. Im Mausmodell führten Sepsis und Hunger zu einer verringerten Sfrp2-Expression, während dies in der Denervation-induzierten Skelettmuskelatrophie nicht festzustellen war. In differenzierten C2C12-Myotuben führte TGF-beta1 zu einer verringerten Sfrp2-mRNA- und Proteinexpression. Luciferase-Assays deuteten auf eine TGF-beta1-abhängige Herunterregulation von Sfrp2 hin, welche auf Promoterebene durch mögliche negative regulatorische Elemente im Sfrp2-Promoter vermittelt wurde. Weiterhin wurde eine TGF-beta1 induzierte Muskelatrophie durch transkriptionelle Repression der myosin heavy chain Gene beobachtet. Im Gegensatz dazu veränderte TGF-beta1 nicht den proteasomalen Abbau muskulärer Proteine. Die Genexpression von Tripartite motif containing 63 und F-box only protein 32 war hingegen leicht herunterreguliert. TGF-beta1-induzierte Atrophie in differenzierten C2C12-Myotuben wurde teilweise durch rekombinantes Sfrp2 aufgehoben. Weiterhin wurde eine direkte physikalische Interaktion zwischen Sfrp2 und TGF-beta1 gefunden, welche diesen Effekt verursacht haben könnte. Zusammengefasst lässt sich feststellen, dass der TGF-beta1- Signalweg eine wichtige Rolle in der ICUAW durch Inhibition der myosin heavy chain Expression spielt. TGF-beta1-abhängige Herunterregulation von Sfrp2 könnte zu einer Feedback-Antwort, die das Ausmaß der Atrophie durch TGF-beta1 verstärkt, führen. / Transforming growth factor beta 1 (TGF-beta1) is a multifunctional cytokine that may play a role in sepsis and in sepsis-induced myopathy. Our group speculated that increased TGF-beta1 could contribute to intensive care (ICU)-acquired weakness (ICUAW), a catastrophic muscle disease in critically ill patients. We found that TGF-beta1 signaling in skeletal muscle biopsies of ICUAW patients was upregulated. Secreted frizzled related protein 2 (SFRP2) was the most regulated gene identified by gene set enrichment analysis (GSEA). I then studied the regulation and function of SFRP2 in different skeletal muscle atrophy models. In three mouse models, downregulated Sfrp2 expression was observed in sepsis and starvation, but not in denervation-induced skeletal muscle atrophy. In differentiated C2C12 myotubes, TGF-beta1 downregulated Sfrp2 expression on both mRNA and protein levels. Luciferase assays suggested that TGF-beta1-dependent downregulation of Sfrp2 was mediated at the promoter level through possible negative regulatory elements in the Sfrp2 promoter. I also observed that TGF-beta1-induced muscle atrophy was accompanied by transcriptional repression of myosin heavy chain genes. In contrast, TGF-beta1 did not increase proteasomal degradation of muscular proteins since gene expression of Tripartite motif containing 63 (Trim63) and F-box only protein (Fbxo32) was not upregulated; instead, they were slightly downregulated. TGF- beta1-induced differentiated C2C12 myotube atrophy was partially reversed by recombinant Sfrp2. This inhibitory effect could have resulted from direct interaction between Sfrp2 and TGF-beta1, since I found a physical interaction between these two proteins. Taken together, TGF-beta1 signaling pathway could play an important role in ICUAW via inhibition of myosin heavy chain expression. TGF-beta1-dependent downregulation of Sfrp2 may establish a feedback loop augmenting the atrophic effect of TGF-beta1.
|
2 |
Transcriptional regulation of MuRF1 in skeletal muscle atrophyBois, Philipp Du 10 December 2014 (has links)
Die Komposition der Skelettmuskulatur resultiert aus der fein abgestimmten Balance von Proteinauf- und Abbaumechanismen. Die Skelettmuskelatrophie kann in verschiedenen Situationen entstehen bzw. von diversen Krankheiten ausgelöst werden (Altern, Hunger, Krebs, Nervenschädigung, Kachexie) und ist meist die Folge von gesteigertem Proteinabbau, der die Proteinsynthese überwiegt. Der Muskelabbau ist physiologisch teilweise sinnvoll und dient der Notversorgung von lebenswichtigen Organen mit Lipiden, Aminosäuren und Glukose. Insgesamt ist eine funktionsfähige Muskulatur sehr wichtig, sowohl für Gesunde als auch Erkrankte, da bei Muskelatrophie auslösenden Erkrankungen das Gesamtüberleben wesentlich verringert ist und die Lebensqualität der Patienten enorm reduziert ist. Der Abbau von strukturellen Muskelproteinen wurde hauptsächlich dem Ubiquitin-Proteasom System zugeschrieben, dessen Regulation und von seinen einzelnen Enzymen muss genauestens verstanden sein, um in der Zukunft zielgerichtete Therapien entwickeln zu können. Eines der zentralen Enzyme in der Skelett- und Herzmuskelatrophie ist die E3 Ubiquitin Ligase MuRF1. In nahezu allen Modellen für Muskelatrophie wurde eine starke Zunahme der Expression von MuRF1 beschrieben. Betrachtet man die sehr zentrale Rolle von MuRF1 im UPS, dort vermittelt MuRF1 den Abbau von strukturellen Proteinen des Sarkomers, und der beobachteten starken Regulation bei diversen Atrophie-Modellen, wird klar, wie wichtig das Verständnis der transkriptionellen Regulation von MuRF1 selbst ist. In den letzten Jahren wurden bereits einige Transkriptionsfaktoren identifiziert, die an der Regulation von MuRF1 bei verschiedenen Atrophie-Modellen beteiligt sind, die Studien zeigten aber auch, dass noch nicht alle Modelle erklärt werden konnten. Um die verbleibenden Wissenslücken zu füllen, wurde in dieser Studie nach neuen transkriptionellen Regulatoren von MuRF1 gesucht und deren Beteiligung an bereits bekannten Signalwegen analysiert. / Skeletal muscle mass is permanently balanced as a result of fine tuned protein synthesis and degradation mechanisms. Skeletal muscle atrophy occurs when protein degradation exceeds protein synthesis, which happens in a variety of conditions, such as aging, starvation, cancer, cachexia or denervation. Degradation of muscle mass can sometimes be useful, e.g. as source for lipids, amino acids and glucose in case of critical malnutrition as well as several other physiological conditions. But a solid composition and thereby functional maintenance of muscles is necessary for healthy individuals as well as individuals suffering from atrophy releasing diseases as to retain their mobility and to preserve full heart functions. Since degradation of structural proteins in muscle tissue has been addressed mainly to the ubiquitin-proteasome-system, the regulation of the participating components needs to be understood in detail to develop constructive treatments and therapies for atrophy prevention. One of the key enzymes in skeletal and heart muscle atrophy is the E3 ubiquitin ligase MuRF1. Its expression levels and protein content was found to be elevated in almost every know atrophy model. MuRF1 is very critical for the muscles composition and thus their functional integrity, as it marks and initiates degradation of structural and contractile proteins via the UPS. Since MuRF1 plays a prominent role in muscle atrophy, its transcriptional regulation needs to be well understood to develop effective therapies for all the different atrophy models MuRF1 has been linked to. Several transcription factors have been identified to regulate MuRF1 at different ratios and in diverse atrophy models. Importantly, they do not explain all MuRF1 inducing events observed. To fill some of the remaining knowledge gaps, the studies aims were to find new transcriptional regulators for MuRF1 and to analyze potential involvements of the obtained candidates in pathways affecting skeletal muscle atrophy.
|
Page generated in 0.0847 seconds