• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 1
  • Tagged with
  • 24
  • 24
  • 24
  • 9
  • 8
  • 8
  • 7
  • 6
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The development of instrumentation for the support of skin friction and heat flux measurements

Putz, John M. 22 October 2009 (has links)
Instrumentation has been designed to process the signals from two types of skin friction gages and a microfabricated heat flux gage. Design changes for the skin friction gages are presented which will improve the performance of the two transducers. The instrumentation is simple in design and use and has been designed to maximize the performance of the skin friction and heat flux gages. The instrumentation is battery powered to minimize noise levels and to maintain instrumentation portability. A high-quality instrumentation amplifier, a voltage regulator, and a custom-designed circuit board have been combined to produce an instrumentation package which is stable and durable. The instrumentation has been specifically designed to handle low-level signals and can operate over a wide range of frequencies. Problems commonly associated with low-level signal conditioning like electrical noise, nonlinearities, and output drift are addressed. The performance specifications of the instrumentation are presented along with sample gage measurements. / Master of Science
22

Floating head skin friction gage measurements in supersonic flows

Lattimer, Brian Y. 30 June 2009 (has links)
Two floating head skin friction gages have been designed and tested to directly measure the skin friction coefficient for the undefined flow in a SCRAM-jet engine. The skin friction gage designs contain a floating head that is supported by ball bearings which allow it to move in any horizontal direction and restrain it from any vertical motion. The shearing force caused by the supersonic flow deflects the floating head parallel to the flow direction. Strain gages mounted across a small gap between the bottom of the floating element and the bottom clamp provide the restoring force on the floating head. These strain gages also measure the floating head deflection caused by the flow shearing force. The steel model design was built and tested to determine the feasibility of the design concept. The results from the supersonic wind tunnel at Mach 2.4 were reasonable but the steel model was unable to correctly respond to the short-duration flow of the shock tunnel. A skin friction gage made of a machinable ceramic called Macor was then designed to increase the resonant natural frequency (3600 Hz) and the insulating properties of the gage. Consequently, the Macor model floating head design is capable of measuring the skin friction coefficient in short duration, high enthalpy supersonic flows as well as long duration supersonic flows. The Macor model design yielded skin friction coefficient values near the expected value of 0.0014 when placed in a supersonic tunnel at both Mach 2.4 and Mach 3.0 and in a Mach 3.0 shock tunnel. / Master of Science
23

Design of a supersonic shock tunnel and experimental surface measurements

Mukkamala, Yagnavalkya S. January 1993 (has links)
The design, development, construction, and instrumentation features of a supersonic shock tunnel that produced high temperature supersonic flow for a short duration, on the order of 2 msec, are presented. The shock tunnel was equipped with a Mach 3 supersonic 2-D nozzle. Test runs were conducted using air and helium drivers at driving pressures varying from 200-450 psig (1.4-3.1 MPa gage), with the driven gas in all the cases being ambient air. Pressure and temperature measurements were made to document the operating conditions of the tunnel. Total pressure measurements were made in the settling chamber of the nozzle where the flow Mach number is 0.14 (weakly subsonic). Static pressure measurements were made at the exit of the nozzle to establish the unsteady starting process of the nozzle. Total temperature measurements using thermocouples were made in the settling chamber of the nozzle to identify the maximum temperature attained in the flow. Surface heat flux measurements were made at the exit of the nozzle and compared with previous skin friction measurements. The measured pressures and temperatures compared well with the predicted values for the air driver. In the case of the test runs with the helium driver the nozzle started, but the flow was unsteady. Consequently, there were difficulties in making measurements and interpreting them. The surface heat flux and skin friction followed the Reynold's analogy within 50% during the steady run time of the shock tunnel. / M.S.
24

Structure Of Sink Flow Boundary Layers

Ajit, Dixit Shivsai 10 1900 (has links)
The work reported in this thesis is an experimental and theoretical investigation of the so-called sink flow boundary layers. These are two-dimensional (in the mean), favourable-pressure-gradient (FPG) boundary layer flows where the boundary layers experience stream-wise acceleration inside a two-dimensional convergent channel with smooth and plane walls. The boundary layers studied are mainly turbulent with few cases that may be identified as reverse-transitional. The sink flow turbulent boundary layers (TBLs) are the only smooth-walled layers that are in ‘perfect equilibrium’ or ‘exact self-preservation’ in the sense of Townsend (1976) and Rotta (1962). The present boundary layer experiments were conducted in an open-return low-speed wind tunnel. The sink flow conditions were established on the test-plate by using a contoured test-section ceiling for creating a convergent channel with smooth and plane walls. The strength of the streamwise FPG was varied by changing the freestream speed in the test-section. Few zero-pressure-gradient (ZPG) turbulent boundary layers were also measured in the same tunnel for which the contoured ceiling was replaced by a straight one. The velocity measurement techniques used include conventional Pitot-tubes for mean flow measurements and hotwire/crosswire probes for turbulence measurements. For measurement of skin friction in ZPG flows, Preston-tube was used while for the sink flows the so-called surface hotwire method was employed. Static pressures were measured on the test-surface using an alcohol-based projection manometer. Boundary layers were tripped at the beginning of the test-plate to ensure quick transition to turbulence. The mean velocity scaling in sink flow TBLs in the presence of strong FPG has been studied systematically, especially in view of the apparent pressure-gradient-dependence of the logarithmic laws reported in the literature (Spalart & Leonard, 1986; Nickels, 2004; Chauhan et al., 2007). The experimental study of sink flow TBLs carried out over a wide range of streamwise FPGs has shown that the mean velocity profiles (in inner coordinates) exhibit systematic departures from the universal logarithmic law as the pressure gradient parameter ∆p is varied. Even so, each of these profiles exhibits a logarithmic region, albeit non-universal, whose constants are functions of the pressure gradient. Systematic dependence of these constants on the pressure gradient parameter ∆p is observed. Moreover, the wake region is uniformly absent in all these profiles. In other words, each profile looks like a ‘pure wall-flow’, in the sense of Coles (1957), only if it is viewed in relation to its own non-universal logarithmic law. To support the experimental observation of the pressure-gradient-dependence of logarithmic laws in sink flow TBLs, a theory based on the method of matched asymptotic expansions has been applied to sink flow TBLs and this theory reveals a systematic dependence of inner and outer logarithmic laws on the pressure gradient parameter ∆p. This dependence is essentially a higher-order effect and therefore becomes significant only in the presence of relatively strong pressure gradients. Comparison of the theory with the experimental data demonstrates that the disappearance of the universal logarithmic law in strong FPG situations does not necessarily imply the absence of classical inner-outer overlap region. The overlap may still manifest itself as a logarithmic functional form with constants that are strongly influenced by the magnitude of the FPG. An immediate use of the non-universal log laws is towards the estimation skin friction in strong-pressure-gradient equilibrium and near-equilibrium TBL flows and this issue has been studied in some detail. It is shown that the conventional Clauser-chart method for estimation of skin friction (which gives fairly accurate results for ZPG or mild-pressure-gradient flows), originally proposed by Clauser (1954), can be modified to deal with the situations involving strong streamwise pressure gradients, provided that the equilibrium or near-equilibrium TBL under consideration is not very close to relaminarization or separation. In such cases, the overlap layer manifests itself in the form of non-universal logarithmic laws that are dependent on the local strength of the pressure gradient. Using these non-universal log laws in conjunction with the measured pressure distribution (necessary for obtaining the acceleration parameter K) and a measured mean velocity profile, it is possible to obtain the local skin friction coefficient to an accuracy which is typical of skin friction measurements. This modified Clauser-chart method (MCCM) employs a two-fold iterative procedure (one iteration on Cf and the other on ∆p) in contrast to the conventional method that involves only one iteration (on Cf alone). As a by-product of this MCCM, one obtains the local pressure gradient parameter ∆p and the slope 1/κ and intercept C of the non-universal log law for that profile. It is also demonstrated that the arm´MCCM is quite robust to the changes in the universal values of K´arman constant κ0 and intercept C0 for the ZPG turbulent boundary layer. Various aspects of the large-scale structure in turbulent and reverse-transitional sink flow boundary layers subjected to streamwise FPGs have also been investigated. The use of sink flow configuration allows systematic characterization of the large-scale structure with the strength of the FPG as a parameter where the characterization is not contaminated by the upstream history effects. The large-scale structure is identified by cross-correlating the wall-shear stress fluctuation with the streamwise velocity fluctuation. The structure orientation is found to be linear over a large wall-normal extent typically extending from y/δ of 0.1 to 0.6. Beyond y/δ =0.6, the correlation under consideration becomes very weak to allow any conclusive results. The average structure inclination angle αavg is found to decrease systematically with increase in the streamwise FPG. This result is important and has implications towards modeling of the near-wall region. Further it is found that the structure gets elongated considerably as the FPG is increased, i.e. the streamwise spatial extent of the structure increases. Taken together, it is observed that the structure becomes flatter and longer with the increase in FPG. Structural models are proposed for sink flow TBLs in the form of either the shape of individual hairpin vortices or the possible structural self-organization. These models are then discussed in the light of present experimental results. It is also shown that the process of relaminarization of a TBL by strong FPG may be better appreciated by appealing to these structural models. The validity of Taylor’s hypothesis for structure angle measurements in the present study has been established experimentally. This exercise is important since the flows under consideration are highly accelerated and sometimes even reverse-transitional. In most of the previous work on the validity of Taylor’s hypothesis, at least for the measurements similar to the present work, the emphasis has been on ZPG turbulent boundary layers. The present exercise is therefore crucial for accelerating flows. Possible reasons for the observed validity of Taylor’s hypothesis have also been identified − specifically it is seen that the condition ∆xp/L << 1 needs to be met for Taylor’s hypothesis to be valid in pressure gradient flows. Investigation of the structure convection velocity from the space-time correlations has revealed that the convection velocity of a typical structure in the present sink flow boundary layers is almost equal to the local mean velocity (more than 90%). This implies that the structure gets convected downstream almost along with the mean flow. Near-wall ‘active’ and ‘inactive’ motions in sink flow TBLs have been studied, discussed and compared with the corresponding results for ZPG turbulent boundary layers from five different aspects: (i) turbulent diffusion of TKE, (ii) quadrant statistics, (iii) profiles of the streamwise turbulence intensity, (iv) event correlation length scales obtained from conditional sampling on the instantaneous flux signal and (v) profiles of the Townsend parameter Tp =(−uv) /u2. Near-wall inactive motion is seen to be related to the strength of the large-eddy structure in the outer region of TBL flow. For APG flows the near-wall inactive motion is known to be more intense (Bradshaw, 1967b) than the ZPG flows, say at the same K´arman number δ+. This observation is consistent with a stronger large-eddy structure that may be perceived from the stronger wake component in the mean velocity variation and the larger mean entrainment in an APG turbulent boundary layer as compared to the ZPG flow at same δ+. In sink flow TBLs, the large-eddy structure is much weaker in comparison to the ZPG flow at same δ+ which is consistent with the absence of wake component in the mean velocity profile as well as the zero mean entrainment into the layer. A sink flow TBL represents, a state of weakest large-eddy structure and hence minimum intensity of inactive motion compared to any other equilibrium or near-equilibrium TBL flow having the same K´arman number δ+. All the analysis of the relevant experimental data seems to support this.

Page generated in 0.0919 seconds