• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cloud-based Skin Lesion Diagnosis System using Convolutional Neural Networks

Unknown Date (has links)
Skin cancer is a major medical problem. If not detected early enough, skin cancer like melanoma can turn fatal. As a result, early detection of skin cancer, like other types of cancer, is key for survival. In recent times, deep learning methods have been explored to create improved skin lesion diagnosis tools. In some cases, the accuracy of these methods has reached dermatologist level of accuracy. For this thesis, a full-fledged cloud-based diagnosis system powered by convolutional neural networks (CNNs) with near dermatologist level accuracy has been designed and implemented in part to increase early detection of skin cancer. A large range of client devices can connect to the system to upload digital lesion images and request diagnosis results from the diagnosis pipeline. The diagnosis is handled by a two-stage CNN pipeline hosted on a server where a preliminary CNN performs quality check on user requests, and a diagnosis CNN that outputs lesion predictions. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2018. / FAU Electronic Theses and Dissertations Collection
2

Desenvolvimento de software e hardware para diagnóstico e acompanhamento de lesões dermatológicas suspeitas para câncer de pele

Oselame, Gleidson Brandão 28 August 2014 (has links)
O câncer é responsável por cerca de 7 milhões de óbitos anuais em todo o mundo. Estima-se que 25% de todos os cânceres são de pele, sendo no Brasil o tipo mais incidente em todas as regiões geográficas. Entre eles, o tipo melanoma, responsável por 4% dos cânceres de pele, cuja incidência dobrou mundialmente nos últimos dez anos. Entre os métodos diagnósticos empregados, cita-se a regra ABCD, que leva em consideração assimetria (A), bordas (B), cor (C) e diâmetro (D) de manchas ou nevos. O processamento digital de imagens tem mostrado um bom potencial para auxiliar no diagnóstico precoce de melanomas. Neste sentido, o objetivo do presente estudo foi desenvolver um software, na plataforma MATLAB®, associado a um hardware para padronizar a aquisição de imagens, visando realizar o diagnóstico e acompanhamento de lesões cutâneas suspeitas de malignidade (melanoma). Utilizou-se como norteador a regra ABCD para o desenvolvimento de métodos de análise computacional. Empregou-se o MATLAB como ambiente de programação para o desenvolvimento de um software para o processamento digital de imagens. As imagens utilizadas foram adquiridas de dois bancos de imagens de acesso livre. Foram inclusas imagens de melanomas (n=15) e imagens nevos (não câncer) (n=15). Utilizaram-se imagens no canal de cor RGB, as quais foram convertidas para escala de cinza, aplicação de filtro de mediana 8x8 e técnica de aproximação por vizinhança 3x3. Após, procedeu-se a binarização e inversão de preto e branco para posterior extração das características do contorno da lesão. Para a aquisição padronizada de imagens foi desenvolvido um protótipo de hardware, o qual não foi empregado neste estudo (que utilizou imagens com diagnóstico fechado, de bancos de imagem), mas foi validado para a avaliação do diâmetro das lesões (D). Utilizou-se a estatística descritiva onde os grupos foram submetidos ao teste não paramétrico para duas amostras independentes de Mann-Whitney U. Ainda, para avaliar a sensibilidade (SE) e especificidade (SP) de cada variável, empregou-se a curva ROC. O classificador utilizado foi uma rede neural artificial de base radial, obtendo acerto diagnóstico para as imagens melanomas de 100% e para imagens não câncer de 90,9%. Desta forma, o acerto global para predição diagnóstica foi de 95,5%. Em relação a SE e SP do método proposto, obteve uma área sob a curva ROC de 0,967, o que sugere uma excelente capacidade de predição diagnóstica, sobretudo, com baixo custo de utilização, visto que o software pode ser executado na grande maioria dos sistemas operacionais hoje utilizados. / Cancer is responsible for about 7 million deaths annually worldwide. It is estimated that 25% of all cancers are skin, and in Brazil the most frequent in all geographic regions type. Among them, the melanoma type, accounting for 4% of skin cancers, whose incidence has doubled worldwide in the past decade. Among the diagnostic methods employed, it is cited ABCD rule which considers asymmetry (A), edges (B), color (C) and diameter (D) stains or nevi. The digital image processing has shown good potential to aid in early diagnosis of melanoma. In this sense, the objective of this study was to develop software in MATLAB® platform, associated with hardware to standardize image acquisition aiming at performing the diagnosis and monitoring of suspected malignancy (melanoma) skin lesions. Was used as the ABCD rule for guiding the development of methods of computational analysis. We used MATLAB as a programming environment for the development of software for digital image processing. The images used were acquired two banks pictures free access. Images of melanomas (n = 15) and pictures nevi (not cancer) (n = 15) were included. We used the image in RGB color channel, which were converted to grayscale, application of 8x8 median filter and approximation technique for 3x3 neighborhood. After we preceded binarization and reversing black and white for subsequent feature extraction contours of the lesion. For the standardized image acquisition was developed a prototype hardware, which was not used in this study (that used with enclosed diagnostic images of image banks), but has been validated for evaluation of lesion diameter (D). We used descriptive statistics where the groups were subjected to non-parametric test for two independent samples Mann-Whitney U test yet, to evaluate the sensitivity (SE) and specificity (SP) of each variable, we used the ROC curve. The classifier used was an artificial neural network with radial basis function, obtaining diagnostic accuracy for melanoma images and 100% for images not cancer of 90.9%. Thus, the overall diagnostic accuracy for prediction was 95.5%. Regarding the SE and SP of the proposed method, obtained an area under the ROC curve of 0.967, which suggests an excellent diagnostic ability to predict, especially with low costs, since the software can be run in most systems operational use today.
3

Desenvolvimento de software e hardware para diagnóstico e acompanhamento de lesões dermatológicas suspeitas para câncer de pele

Oselame, Gleidson Brandão 28 August 2014 (has links)
O câncer é responsável por cerca de 7 milhões de óbitos anuais em todo o mundo. Estima-se que 25% de todos os cânceres são de pele, sendo no Brasil o tipo mais incidente em todas as regiões geográficas. Entre eles, o tipo melanoma, responsável por 4% dos cânceres de pele, cuja incidência dobrou mundialmente nos últimos dez anos. Entre os métodos diagnósticos empregados, cita-se a regra ABCD, que leva em consideração assimetria (A), bordas (B), cor (C) e diâmetro (D) de manchas ou nevos. O processamento digital de imagens tem mostrado um bom potencial para auxiliar no diagnóstico precoce de melanomas. Neste sentido, o objetivo do presente estudo foi desenvolver um software, na plataforma MATLAB®, associado a um hardware para padronizar a aquisição de imagens, visando realizar o diagnóstico e acompanhamento de lesões cutâneas suspeitas de malignidade (melanoma). Utilizou-se como norteador a regra ABCD para o desenvolvimento de métodos de análise computacional. Empregou-se o MATLAB como ambiente de programação para o desenvolvimento de um software para o processamento digital de imagens. As imagens utilizadas foram adquiridas de dois bancos de imagens de acesso livre. Foram inclusas imagens de melanomas (n=15) e imagens nevos (não câncer) (n=15). Utilizaram-se imagens no canal de cor RGB, as quais foram convertidas para escala de cinza, aplicação de filtro de mediana 8x8 e técnica de aproximação por vizinhança 3x3. Após, procedeu-se a binarização e inversão de preto e branco para posterior extração das características do contorno da lesão. Para a aquisição padronizada de imagens foi desenvolvido um protótipo de hardware, o qual não foi empregado neste estudo (que utilizou imagens com diagnóstico fechado, de bancos de imagem), mas foi validado para a avaliação do diâmetro das lesões (D). Utilizou-se a estatística descritiva onde os grupos foram submetidos ao teste não paramétrico para duas amostras independentes de Mann-Whitney U. Ainda, para avaliar a sensibilidade (SE) e especificidade (SP) de cada variável, empregou-se a curva ROC. O classificador utilizado foi uma rede neural artificial de base radial, obtendo acerto diagnóstico para as imagens melanomas de 100% e para imagens não câncer de 90,9%. Desta forma, o acerto global para predição diagnóstica foi de 95,5%. Em relação a SE e SP do método proposto, obteve uma área sob a curva ROC de 0,967, o que sugere uma excelente capacidade de predição diagnóstica, sobretudo, com baixo custo de utilização, visto que o software pode ser executado na grande maioria dos sistemas operacionais hoje utilizados. / Cancer is responsible for about 7 million deaths annually worldwide. It is estimated that 25% of all cancers are skin, and in Brazil the most frequent in all geographic regions type. Among them, the melanoma type, accounting for 4% of skin cancers, whose incidence has doubled worldwide in the past decade. Among the diagnostic methods employed, it is cited ABCD rule which considers asymmetry (A), edges (B), color (C) and diameter (D) stains or nevi. The digital image processing has shown good potential to aid in early diagnosis of melanoma. In this sense, the objective of this study was to develop software in MATLAB® platform, associated with hardware to standardize image acquisition aiming at performing the diagnosis and monitoring of suspected malignancy (melanoma) skin lesions. Was used as the ABCD rule for guiding the development of methods of computational analysis. We used MATLAB as a programming environment for the development of software for digital image processing. The images used were acquired two banks pictures free access. Images of melanomas (n = 15) and pictures nevi (not cancer) (n = 15) were included. We used the image in RGB color channel, which were converted to grayscale, application of 8x8 median filter and approximation technique for 3x3 neighborhood. After we preceded binarization and reversing black and white for subsequent feature extraction contours of the lesion. For the standardized image acquisition was developed a prototype hardware, which was not used in this study (that used with enclosed diagnostic images of image banks), but has been validated for evaluation of lesion diameter (D). We used descriptive statistics where the groups were subjected to non-parametric test for two independent samples Mann-Whitney U test yet, to evaluate the sensitivity (SE) and specificity (SP) of each variable, we used the ROC curve. The classifier used was an artificial neural network with radial basis function, obtaining diagnostic accuracy for melanoma images and 100% for images not cancer of 90.9%. Thus, the overall diagnostic accuracy for prediction was 95.5%. Regarding the SE and SP of the proposed method, obtained an area under the ROC curve of 0.967, which suggests an excellent diagnostic ability to predict, especially with low costs, since the software can be run in most systems operational use today.
4

Skin lesion detection using deep learning

Rajit Chandra (12495442) 03 May 2022 (has links)
<p>Skin lesion can be deadliest if not detected early. Early detection of skin lesion can save many lives. Artificial Intelligence and Machine learning is helping healthcare in many ways and so in the diagnosis of skin lesion. Computer aided diagnosis help clinicians in detecting the cancer. The study was conducted to classify the seven classes of skin lesion using very powerful convolutional neural networks. The two pre trained models i.e., DenseNet and Incepton-v3 were employed to train the model and accuracy, precision, recall, f1score and ROC-AUC was calculated for every class prediction. Moreover, gradient class activation maps were also used to aid the clinicians in determining what are the regions of image that influence model to make a certain decision. These visualizations are used for explainability of the model. Experiments showed that DenseNet performed better then Inception V3. Also it was noted that gradient class activation maps highlighted different regions for predicting same class. The main contribution was to introduce medical aided visualizations in lesion classification model that will help clinicians in understanding the decisions of the model. It will enhance the reliability of the model. Also, different optimizers were employed with both models to compare the accuracies.</p>

Page generated in 0.0428 seconds