• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Robust pricing and hedging beyond one marginal

Spoida, Peter January 2014 (has links)
The robust pricing and hedging approach in Mathematical Finance, pioneered by Hobson (1998), makes statements about non-traded derivative contracts by imposing very little assumptions about the underlying financial model but directly using information contained in traded options, typically call or put option prices. These prices are informative about marginal distributions of the asset. Mathematically, the theory of Skorokhod embeddings provides one possibility to approach robust problems. In this thesis we consider mostly robust pricing and hedging problems of Lookback options (options written on the terminal maximum of an asset) and Convex Vanilla Options (options written on the terminal value of an asset) and extend the analysis which is predominately found in the literature on robust problems by two features: Firstly, options with multiple maturities are available for trading (mathematically this corresponds to multiple marginal constraints) and secondly, restrictions on the total realized variance of asset trajectories are imposed. Probabilistically, in both cases, we develop new optimal solutions to the Skorokhod embedding problem. More precisely, in Part I we start by constructing an iterated Azema-Yor type embedding (a solution to the n-marginal Skorokhod embedding problem, see Chapter 2). Subsequently, its implications are presented in Chapter 3. From a Mathematical Finance perspective we obtain explicitly the optimal superhedging strategy for Barrier/Lookback options. From a probability theory perspective, we find the maximum maximum of a martingale which is constrained by finitely many intermediate marginal laws. Further, as a by-product, we discover a new class of martingale inequalities for the terminal maximum of a cadlag submartingale, see Chapter 4. These inequalities enable us to re-derive the sharp versions of Doob's inequalities. In Chapter 5 a different problem is solved. Motivated by the fact that in some markets both Vanilla and Barrier options with multiple maturities are traded, we characterize the set of market models in this case. In Part II we incorporate the restriction that the total realized variance of every asset trajectory is bounded by a constant. This has been previously suggested by Mykland (2000). We further assume that finitely many put options with one fixed maturity are traded. After introducing the general framework in Chapter 6, we analyse the associated robust pricing and hedging problem for convex Vanilla and Lookback options in Chapters 7 and 8. Robust pricing is achieved through construction of appropriate Root solutions to the Skorokhod embedding problem. Robust hedging and pathwise duality are obtained by a careful development of dynamic pathwise superhedging strategies. Further, we characterize existence of market models with a suitable notion of arbitrage.
2

Étude de peacocks sous l'hypothèse de monotonie conditionnelle et de positivité totale / A study of Peacocks under the assumptions of conditional monotonicity and total positivity

Bogso, Antoine Marie 23 October 2012 (has links)
Cette thèse porte sur les processus croissants pour l'ordre convexe que nous désignons sous le nom de peacocks. Un résultat remarquable dû à Kellerer stipule qu'un processus stochastique à valeurs réelles est un peacock si et seulement s'il possède les mêmes marginales unidimensionnelles qu'une martingale. Une telle martingale est dite associée à ce processus. Mais dans son article, Kellerer ne donne ni d'exemple de peacock, ni d'idée précise sur la construction d'une martingale associée pour un peacock donné. Ainsi, comme d'autres travaux sur les peacocks, notre étude vise deux objectifs. Il s'agit d'exhiber de nouvelles familles de peacocks et de construire des martingales associées pour certains peacocks. Dans les trois premiers chapitres, nous exhibons diverses classes de peacocks en utilisant successivement les notions de monotonie conditionnelle, de peacock très fort et de positivité totale d'ordre 2. En particulier, nous fournissons plusieurs extensions du résultat de Carr-Ewald-Xiao selon lequel la moyenne arithmétique du mouvement brownien géométrique, encore appelée "option asiatique" est un peacock. L'objet du dernier chapitre est de construire des martingales associées pour une classe de peacocks. Pour cela, nous utilisons les plongements d'Azéma-Yor et de Bertoin-Le Jan. L'originalité de ce chapitre est l'utilisation de la positivité totale d'ordre 2 dans l'étude du plongement d'Azéma-Yor / This thesis deals with real valued stochastic processes which increase in the convex order. We call them peacocks. A remarkable result due to Kellerer states that a real valued process is a peacock if and only if it has the same one-dimensional marginals as a martingale. Such a martingale is said to be associated to this process. But in his article, Kellerer provides neither an example of peacock nor a concrete idea to construct an associated martingale to a given peacock. Hence, as other investigations on peacocks, our study has two purposes. We first exhibit new families of peacocks and then, we contruct associated martingales to certain of them. In the first three chapters, we exhibit several classes of peacocks using successively the notions of conditional monotonicity, very strong peacock and total positivity of order 2. In particular, we provide many extensions of Carr-Ewald-Xiao result which states that the arithmetic mean of geometric Brownian motion, also called "Asian option" is a peacock. The purpose of the last chapter is to construct associated martingales to certain peacocks. To this end, we use Azéma-Yor and Bertoin-Le Jan embedding algorithms. The originality of this chapter is the use of total positivity of order 2 in the study of Azéma-Yor embedding algorithm

Page generated in 0.0749 seconds