• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Protection of buried rigid pipes using geogrid-reinforced soil systems subjected to cyclic loading

Elshesheny, Ahmed, Mohamed, Mostafa H.A., Sheehan, Therese 16 March 2021 (has links)
Yes / The performance of buried rigid pipes underneath geogrid-reinforced soil while applying incrementally increased cyclic loading was assessed using a fully instrumented laboratory rig. The influence of varying two parameters of practical importance was investigated; the pipe burial depth and the number of geogrid-layers. Measurements were taken for pipe deformation, footing settlement, strain in pipe and reinforcing layers, and pressure/soil stress on the pipe crown during various stages of cyclic loading. The research outcomes demonstrated a rapid increase in the rate of deformation of the pipe and the footing, and the rate of generated strain in the pipe and the geogrid-layers during the first 300 cycles. While applying further cycles, those rates were significantly decreased. Increasing the pipe burial depth and number of geogrid-layers resulted in reductions in the footing and the pipe deformations, the pressure on pipe crown, and the pipe strains. Redistribution of stresses, due to the inclusion of reinforcing layers, formed a confined zone surrounding the pipe providing it with additional lateral support. The pipe invert experienced a rebound, which was found to be dependent on pressure around the pipe and the degree of densification of the bedding layer. Data for strains measured in the geogrid-layers showed that despite the applied loading value and the pipe burial depth, the tensile strain in the lower geogrid-layer was usually higher than that measured in the upper layer.
2

Numerical behaviour of buried flexible pipes in geogrid-reinforced soil under cyclic loading

Elshesheny, Ahmed, Mohamed, Mostafa H.A., Nagy, N.M., Sheehan, Therese 23 March 2021 (has links)
Yes / Three-dimensional finite element models were executed and validated to investigate the performance of buried flexible high-density Polyethylene (HDPE) pipes, in unreinforced and multi-geogrid-reinforced sand beds, while varying pipe burial depth, number of geogrid-layers, and magnitude of applied cyclic loading. Geogrid-layers were simulated considering their geometrical thickness and apertures, where an elasto-plastic constitutive model represented its behaviour. Soil-geogrid load transfer mechanisms due to interlocked soil in-between the apertures of the geogrid-layer were modelled. In unreinforced and reinforced cases, pipe burial depth increase contributed to decreasing deformations of the footing and pipe, and the crown pressure until reaching an optimum value of pipe burial depth. On the contrary, the geogrid-layers strain increased with increasing pipe burial depth. A flexible slab was formed due to the inclusion of two-geogrid-layers, leading to an increase in the strain in the lower geogrid-layer, despite its lower deformation. Inclusion of more than two geogrid-layers formed a heavily reinforced system of higher stiffness, and consequently, strain distribution in the geogrid-layers varied, where the upper layer experienced the maximum strain. In heavily reinforced systems, increasing the amplitude of cyclic loading resulted in a strain redistribution process in the reinforced zone, where the second layer experienced the maximum strain.

Page generated in 0.0268 seconds