• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 250
  • 115
  • 50
  • 31
  • 24
  • 18
  • 8
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 579
  • 134
  • 109
  • 100
  • 95
  • 90
  • 88
  • 82
  • 74
  • 72
  • 62
  • 59
  • 51
  • 45
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

The kinetics of Cr2̲O3̲ reduction from slags by carbon dissolved in molten iron

Anyakwo, C. N. January 1987 (has links)
No description available.
42

Investigations of Electric Arc Furnace Slag Filters: Phosphorus Treatment Performance, Removal Mechanisms and Material Reuse

Bird, Simon 13 February 2009 (has links)
Around the world, the eutrophication of freshwater lakes and streams by the excess loading of phosphorus (P) has become one of the most important water quality issues. In Vermont, P pollution from urban and agricultural non-point sources has led to severe blooms of toxic cyanobacteria in Lake Champlain, and the degradation of the lake’s value as a drinking water source and its recreation potential. Electric arc furnace (EAF) steel slag has been identified as an effective material for use as a filter media for the removal of P from both point and non-point sources of pollution. In order to further assess the feasibility of this technology for use in Vermont, several investigations were carried out starting in the winter of 2006. Three objectives for research were identified: 1) to construct 2 EAF steel slag filters in-series at the Constructed Wetlands Research Center (CWRC) and investigate their efficiency in P, TSS and metals reduction from dairy waste water in a cold climate; 2) investigate the potential for reuse of P saturated EAF steel slag as a soil amendment and plant fertilizer by testing bioavailability of sorbed P and quantities of P released to surface runoff; 3) To elucidate the principal mechanisms responsible for the removal of P in EAF slag filters when used for the treatment of dairy effluent. The results indicated that 2 EAF steel slag filters constructed in-series are an effective method to increase the treatment efficiency and longevity of a filter system. Additionally, parameters for the concentrations of total suspended solids (TSS) and biological oxygen demand (BOD) were developed, both important factors for design of filter systems. In greenhouse trials, Medicago sativa plants achieved greater above ground biomass growth with P fertilization by triple super phosphate (TSP) than EAF steel slag at the shorter growth period (5 weeks). However, by the end of the longer growth period (10 weeks) except at the highest amendment rate, the plants treated with EAF steel slag had a higher growth rate than the TSP, suggesting that EAF steel slag is an effective slow release P source. Using a rain simulator, the amount of P lost to surface runoff from both a saturated and a semi-saturated EAF steel slag was found to be negligible, and except for total P in the saturated slag, to be below 1 mg L-1. Voltammetric analysis and geochemical modeling were used to identify possible mechanisms for the removal of P from waste effluent. The Ca mineral hydroxyapaptite and the Fe(II) mineral vivianite were both shown to be likely mechanisms given the chemical conditions in EAF steel slag filters. This research represents the first investigation of cold weather performance of EAF steel slag filters for the treatment of dairy parlor and milk house waste effluent. Additionally, it was also the first research on the bioavailability of P sorbed to EAF steel slag, and of the possibility of its reuse as a soil amendment, and of the mechanisms involved in P removal from dairy waste effluent.
43

Dissolution rate and diffusivity of lime in steelmaking slag and development of fluoride-free fluxes

Haji Amini, Shahriar, School of Chemical Engineering & Industrial Chemistry, UNSW January 2005 (has links)
A rotating disk technique was used to determine the dissolution rate and diffusivity of CaO and MgO in slags. The dissolution rate was deduced from the measured changes in concentration of oxides in slag with respect to reaction time. The experimental set- up was initially tested with dissolution of magnesia in the CaO ??? 55 wt% Al2O3 slag at 1430 ??C and a measured rate of 2.7 ??10 -5 g/cm2.s was obtained. The dissolution rate was increased by slag chemistry and ranged from 6.5??10-5 to 2.1??10-4 g/cm2.s. The dissolution rate of CaO was measured in CaO ??? 42 wt% Al2O3 ??? 8% SiO2 based slag. The measured dissolution rates were found to be strongly dependent on the slag chemistry and temperature and ranged from 5.03??10 -5 to 3.3??10 -4 g/cm2.s. The dissolution rates were strongly dependent on the rotation speed and results indicate mass transfer in the slag phase to be rate- limiting step. The diffusivity of MgO / CaO was calculated from the dissolution rate and solubility data, using known mass transfer correlations. The diffusivity of MgO in the calcium aluminate slag at 1430 ??C was found to be about 1.1??10-5 cm2/s. Additions of 5 and 10 wt% Fe2O3 increased the diffusivity by a factor ~ 1.5 to 3, respectively. However, with introduction of (CaF2 5 wt% + Fe2O3 5 wt%) and (CaF2 5 wt% + Fe2O3 10 wt%) in the slag, the diffusivity increased considerably by a factor of about 29 and 11, respectively. The diffusivity of CaO in calcium aluminosilicate was measured to be in the order of 10-6 to 10-5 over a temperature range of 1430 ??? 1600 ??C. CaF2 increased the diffusivity by a factor of 3 to 5 while MnOx and FeOx, ilmenite and TiO 2 increased the diffusivity substantially and SiO2 had an opposite effect. The measured diffusivities are in accord with published data on comparable systems and are discussed with reference to Eyring theory. It was concluded that MnOx, FeOx and ilmenite in the slag increase the dissolution rate and diffusivity of lime, showing comparable results with respect to CaF2.
44

Phosphorus removal mechanisms in soil and slag media.

Lee, Seung Hwan January 1995 (has links)
Excessive phosphorus (P) is one of the major pollutants in natural water that are responsible for algal blooms and eutrophication. P removal by soil and slag is an attractive solution if the P sorption capacity of soil or slag is significant. To design an efficient land treatment facility, basic information on the behaviour of P in the media-water environment is required. In this study, detailed experiments were conducted to study P removal under static and dynamic conditions, and mathematical models were developed to describe these processes. The kinetic studies on P sorption onto a sandy loam soil from North Sydney, Australia, and dust and cake waste products from the BHP steel industry revealed that P sorption is a slow process. More than 90% of the P was adsorbed within 70, 12 and 60 hours in a mixing system for soil, dust and cake respectively while it was within 240, 24 and 120 hours respectively in a static (no stirring) system. Dust adsorbed P the most, compared to the other adsorbents (220-225 times and 4-5 times of the sorptivity of soil and cake respectively). P sorption in the batch experiments was described better by an equation using the Langmuir isotherm than one using the Freundlich isotherm. The kinetics of P sorption were satisfactorily explained by a static, physical, non-equilibrium sorption model (SPNSM). The pH of the P solution played a critical role in the extent of removal and the removal mechanisms of P. Removal was at a minimum at pH 2. The effect of pH on P removal varied depending on the type of adsorbents and the initial P concentration. The dominant removal mechanism of P at pH<8 was physical sorption, while it was chemical precipitation at pH>10. Batch flocculation experiments revealed that the P removal efficiency increased with an increase of adsorbent dose, flocculation (contact) time and mixing rate. P sorption is affected by the presence of NH4 which competes for available sites on the adsorbents. The amount of P adsorbed by dust and cake in the presence of NH4 was less than that in a single solute system. The reduction percentage of P for dust ranged from 33 to 57%. Detailed column experiments conducted with soil, dust and cake as media indicated that dust and cake have much higher sorption capacities than soil. The solid phase P concentrations on dust and cake calculated from batch experimental isotherm constants are substantially higher than those estimated.
45

Dissolution rate and diffusivity of lime in steelmaking slag and development of fluoride-free fluxes

Haji Amini, Shahriar, School of Chemical Engineering & Industrial Chemistry, UNSW January 2005 (has links)
A rotating disk technique was used to determine the dissolution rate and diffusivity of CaO and MgO in slags. The dissolution rate was deduced from the measured changes in concentration of oxides in slag with respect to reaction time. The experimental set- up was initially tested with dissolution of magnesia in the CaO ??? 55 wt% Al2O3 slag at 1430 ??C and a measured rate of 2.7 ??10 -5 g/cm2.s was obtained. The dissolution rate was increased by slag chemistry and ranged from 6.5??10-5 to 2.1??10-4 g/cm2.s. The dissolution rate of CaO was measured in CaO ??? 42 wt% Al2O3 ??? 8% SiO2 based slag. The measured dissolution rates were found to be strongly dependent on the slag chemistry and temperature and ranged from 5.03??10 -5 to 3.3??10 -4 g/cm2.s. The dissolution rates were strongly dependent on the rotation speed and results indicate mass transfer in the slag phase to be rate- limiting step. The diffusivity of MgO / CaO was calculated from the dissolution rate and solubility data, using known mass transfer correlations. The diffusivity of MgO in the calcium aluminate slag at 1430 ??C was found to be about 1.1??10-5 cm2/s. Additions of 5 and 10 wt% Fe2O3 increased the diffusivity by a factor ~ 1.5 to 3, respectively. However, with introduction of (CaF2 5 wt% + Fe2O3 5 wt%) and (CaF2 5 wt% + Fe2O3 10 wt%) in the slag, the diffusivity increased considerably by a factor of about 29 and 11, respectively. The diffusivity of CaO in calcium aluminosilicate was measured to be in the order of 10-6 to 10-5 over a temperature range of 1430 ??? 1600 ??C. CaF2 increased the diffusivity by a factor of 3 to 5 while MnOx and FeOx, ilmenite and TiO 2 increased the diffusivity substantially and SiO2 had an opposite effect. The measured diffusivities are in accord with published data on comparable systems and are discussed with reference to Eyring theory. It was concluded that MnOx, FeOx and ilmenite in the slag increase the dissolution rate and diffusivity of lime, showing comparable results with respect to CaF2.
46

Dissolution rate and diffusivity of lime in steelmaking slag and development of fluoride-free fluxes

Haji Amini, Shahriar, School of Chemical Engineering & Industrial Chemistry, UNSW January 2005 (has links)
A rotating disk technique was used to determine the dissolution rate and diffusivity of CaO and MgO in slags. The dissolution rate was deduced from the measured changes in concentration of oxides in slag with respect to reaction time. The experimental set- up was initially tested with dissolution of magnesia in the CaO ??? 55 wt% Al2O3 slag at 1430 ??C and a measured rate of 2.7 ??10 -5 g/cm2.s was obtained. The dissolution rate was increased by slag chemistry and ranged from 6.5??10-5 to 2.1??10-4 g/cm2.s. The dissolution rate of CaO was measured in CaO ??? 42 wt% Al2O3 ??? 8% SiO2 based slag. The measured dissolution rates were found to be strongly dependent on the slag chemistry and temperature and ranged from 5.03??10 -5 to 3.3??10 -4 g/cm2.s. The dissolution rates were strongly dependent on the rotation speed and results indicate mass transfer in the slag phase to be rate- limiting step. The diffusivity of MgO / CaO was calculated from the dissolution rate and solubility data, using known mass transfer correlations. The diffusivity of MgO in the calcium aluminate slag at 1430 ??C was found to be about 1.1??10-5 cm2/s. Additions of 5 and 10 wt% Fe2O3 increased the diffusivity by a factor ~ 1.5 to 3, respectively. However, with introduction of (CaF2 5 wt% + Fe2O3 5 wt%) and (CaF2 5 wt% + Fe2O3 10 wt%) in the slag, the diffusivity increased considerably by a factor of about 29 and 11, respectively. The diffusivity of CaO in calcium aluminosilicate was measured to be in the order of 10-6 to 10-5 over a temperature range of 1430 ??? 1600 ??C. CaF2 increased the diffusivity by a factor of 3 to 5 while MnOx and FeOx, ilmenite and TiO 2 increased the diffusivity substantially and SiO2 had an opposite effect. The measured diffusivities are in accord with published data on comparable systems and are discussed with reference to Eyring theory. It was concluded that MnOx, FeOx and ilmenite in the slag increase the dissolution rate and diffusivity of lime, showing comparable results with respect to CaF2.
47

Dissolution rate and diffusivity of lime in steelmaking slag and development of fluoride-free fluxes

Haji Amini, Shahriar, School of Chemical Engineering & Industrial Chemistry, UNSW January 2005 (has links)
A rotating disk technique was used to determine the dissolution rate and diffusivity of CaO and MgO in slags. The dissolution rate was deduced from the measured changes in concentration of oxides in slag with respect to reaction time. The experimental set- up was initially tested with dissolution of magnesia in the CaO ??? 55 wt% Al2O3 slag at 1430 ??C and a measured rate of 2.7 ??10 -5 g/cm2.s was obtained. The dissolution rate was increased by slag chemistry and ranged from 6.5??10-5 to 2.1??10-4 g/cm2.s. The dissolution rate of CaO was measured in CaO ??? 42 wt% Al2O3 ??? 8% SiO2 based slag. The measured dissolution rates were found to be strongly dependent on the slag chemistry and temperature and ranged from 5.03??10 -5 to 3.3??10 -4 g/cm2.s. The dissolution rates were strongly dependent on the rotation speed and results indicate mass transfer in the slag phase to be rate- limiting step. The diffusivity of MgO / CaO was calculated from the dissolution rate and solubility data, using known mass transfer correlations. The diffusivity of MgO in the calcium aluminate slag at 1430 ??C was found to be about 1.1??10-5 cm2/s. Additions of 5 and 10 wt% Fe2O3 increased the diffusivity by a factor ~ 1.5 to 3, respectively. However, with introduction of (CaF2 5 wt% + Fe2O3 5 wt%) and (CaF2 5 wt% + Fe2O3 10 wt%) in the slag, the diffusivity increased considerably by a factor of about 29 and 11, respectively. The diffusivity of CaO in calcium aluminosilicate was measured to be in the order of 10-6 to 10-5 over a temperature range of 1430 ??? 1600 ??C. CaF2 increased the diffusivity by a factor of 3 to 5 while MnOx and FeOx, ilmenite and TiO 2 increased the diffusivity substantially and SiO2 had an opposite effect. The measured diffusivities are in accord with published data on comparable systems and are discussed with reference to Eyring theory. It was concluded that MnOx, FeOx and ilmenite in the slag increase the dissolution rate and diffusivity of lime, showing comparable results with respect to CaF2.
48

Ozone treatment of chromium waste materials / Werner van der Merwe

Van der Merwe, Werner January 2011 (has links)
Ozonation, or advanced oxidation processes (utilising ozone decomposition products as oxidants) are widely used in industrial waste water and drinking water treatment plants. In these applications the use of ozone is based on ozone and its decomposition by-products being strong oxidants. A case study revealed that several waterworks in South Africa successfully utilise ozone as a pre-oxidant for the treatment of raw waters. South Africa holds more than three quarters of the world’s viable chromium ore (chromite) reserves. Subsequently the Cr-related industry-within is considerable in size and a major producer of large volumes of waste materials. Chromium also occurs commonly in other industrial waste materials (e.g. fly ash and clinkers originating from coal combustion) and is a natural occurring element in natural sediments, since chromium is the 21st most abundant element in the earth’s crust with an average concentration of approximately 100 ppm. Considering the abundance of natural and anthropogenic Cr-containing materials in South Africa the possibility exists that some of these materials might be suspended in raw water entering water treatment facilities. In this dissertation, the possible oxidation of non-Cr(VI) Cr-containing materials suspended in water during ozonation, is presented within the context of water treatment applications (Chapter 4). The results indicate that in situ formation of hazardous Cr(VI) is possible during aqueous ozonation. pH had a significant influence, since the decomposition products of aqueous O3, i.e. hydroxyl radicals that form at higher pH levels, were found to be predominantly responsible for Cr(VI) formation. Increased ozonation contact time, water temperature and solid loading also resulted in elevated Cr(VI) concentrations being formed. Occasionally these values exceeded the drinking water standard 50 ppb Cr(VI). The results therefore indicate the importance of removing suspended particulates from water prior to ozonation. Additionally, pH-control could be used to mitigate the possible formation of Cr(VI) during ozonation. In Chapter 5, exploratory work is presented on the possibility of utilising Cr(VI) formation via ozonation as a means of recovering chromium from Cr-containing waste materials. Such a study is of particular interest within the local context, considering the large volumes of waste produced by the Cr-related industry in South Africa. This exploratory work is based on the fact that unlike Cr(0) and Cr(III), most Cr(VI) compounds are relatively soluble in water. Cr(VI) is a carcinogen if inhaled, however the probability of negative health effects are substantially reduced if it occurs in solution. Thus a hydrometallurgical route of recovering Cr-units via Cr(VI) generation represents the safest route with regard to Cr(VI) exposure. Such a hydrometallurgical route could also addresses the limitations of the physical separation methods currently applied, which fails to recover fine Cr-containing solids. The degree of Cr2O3-liberation achieved in this exploratory work was relatively low. However, the Cr2O3-liberation achieved for the ferrochromium slag (15%) indicated some promise, considering the limitations of this exploratory work. Several steps can be considered in future studies, which would in all likelihood improve the Cr2O3-liberation further. / Thesis (MSc (Chemistry))--North-West University, Potchefstroom Campus, 2012
49

Ozone treatment of chromium waste materials / Werner van der Merwe

Van der Merwe, Werner January 2011 (has links)
Ozonation, or advanced oxidation processes (utilising ozone decomposition products as oxidants) are widely used in industrial waste water and drinking water treatment plants. In these applications the use of ozone is based on ozone and its decomposition by-products being strong oxidants. A case study revealed that several waterworks in South Africa successfully utilise ozone as a pre-oxidant for the treatment of raw waters. South Africa holds more than three quarters of the world’s viable chromium ore (chromite) reserves. Subsequently the Cr-related industry-within is considerable in size and a major producer of large volumes of waste materials. Chromium also occurs commonly in other industrial waste materials (e.g. fly ash and clinkers originating from coal combustion) and is a natural occurring element in natural sediments, since chromium is the 21st most abundant element in the earth’s crust with an average concentration of approximately 100 ppm. Considering the abundance of natural and anthropogenic Cr-containing materials in South Africa the possibility exists that some of these materials might be suspended in raw water entering water treatment facilities. In this dissertation, the possible oxidation of non-Cr(VI) Cr-containing materials suspended in water during ozonation, is presented within the context of water treatment applications (Chapter 4). The results indicate that in situ formation of hazardous Cr(VI) is possible during aqueous ozonation. pH had a significant influence, since the decomposition products of aqueous O3, i.e. hydroxyl radicals that form at higher pH levels, were found to be predominantly responsible for Cr(VI) formation. Increased ozonation contact time, water temperature and solid loading also resulted in elevated Cr(VI) concentrations being formed. Occasionally these values exceeded the drinking water standard 50 ppb Cr(VI). The results therefore indicate the importance of removing suspended particulates from water prior to ozonation. Additionally, pH-control could be used to mitigate the possible formation of Cr(VI) during ozonation. In Chapter 5, exploratory work is presented on the possibility of utilising Cr(VI) formation via ozonation as a means of recovering chromium from Cr-containing waste materials. Such a study is of particular interest within the local context, considering the large volumes of waste produced by the Cr-related industry in South Africa. This exploratory work is based on the fact that unlike Cr(0) and Cr(III), most Cr(VI) compounds are relatively soluble in water. Cr(VI) is a carcinogen if inhaled, however the probability of negative health effects are substantially reduced if it occurs in solution. Thus a hydrometallurgical route of recovering Cr-units via Cr(VI) generation represents the safest route with regard to Cr(VI) exposure. Such a hydrometallurgical route could also addresses the limitations of the physical separation methods currently applied, which fails to recover fine Cr-containing solids. The degree of Cr2O3-liberation achieved in this exploratory work was relatively low. However, the Cr2O3-liberation achieved for the ferrochromium slag (15%) indicated some promise, considering the limitations of this exploratory work. Several steps can be considered in future studies, which would in all likelihood improve the Cr2O3-liberation further. / Thesis (MSc (Chemistry))--North-West University, Potchefstroom Campus, 2012
50

Phosphorus removal mechanisms in soil and slag media.

Lee, Seung Hwan January 1995 (has links)
Excessive phosphorus (P) is one of the major pollutants in natural water that are responsible for algal blooms and eutrophication. P removal by soil and slag is an attractive solution if the P sorption capacity of soil or slag is significant. To design an efficient land treatment facility, basic information on the behaviour of P in the media-water environment is required. In this study, detailed experiments were conducted to study P removal under static and dynamic conditions, and mathematical models were developed to describe these processes. The kinetic studies on P sorption onto a sandy loam soil from North Sydney, Australia, and dust and cake waste products from the BHP steel industry revealed that P sorption is a slow process. More than 90% of the P was adsorbed within 70, 12 and 60 hours in a mixing system for soil, dust and cake respectively while it was within 240, 24 and 120 hours respectively in a static (no stirring) system. Dust adsorbed P the most, compared to the other adsorbents (220-225 times and 4-5 times of the sorptivity of soil and cake respectively). P sorption in the batch experiments was described better by an equation using the Langmuir isotherm than one using the Freundlich isotherm. The kinetics of P sorption were satisfactorily explained by a static, physical, non-equilibrium sorption model (SPNSM). The pH of the P solution played a critical role in the extent of removal and the removal mechanisms of P. Removal was at a minimum at pH 2. The effect of pH on P removal varied depending on the type of adsorbents and the initial P concentration. The dominant removal mechanism of P at pH<8 was physical sorption, while it was chemical precipitation at pH>10. Batch flocculation experiments revealed that the P removal efficiency increased with an increase of adsorbent dose, flocculation (contact) time and mixing rate. P sorption is affected by the presence of NH4 which competes for available sites on the adsorbents. The amount of P adsorbed by dust and cake in the presence of NH4 was less than that in a single solute system. The reduction percentage of P for dust ranged from 33 to 57%. Detailed column experiments conducted with soil, dust and cake as media indicated that dust and cake have much higher sorption capacities than soil. The solid phase P concentrations on dust and cake calculated from batch experimental isotherm constants are substantially higher than those estimated.

Page generated in 0.2847 seconds