• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 2
  • 2
  • Tagged with
  • 12
  • 12
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Avaliação da colapsabilidade da via aérea superior durante a vigília por meio da pressão negativa expiratória e durante o sono por meio da pressão crítica de fechamento da faringe em indivíduos normais e portadores de apneia obstrutiva do sono / Upper airway collapsibility evaluation during wakefulness using negative expiratory pressure and during sleep using pharyngeal critical closing pressure in obstructive sleep apnea and normal subjects

Raquel Pastrello Hirata 19 September 2016 (has links)
INTRODUÇÃO: A apneia obstrutiva do sono (AOS) é comum na população geral e é caracterizada pelo colapso recorrente da via aérea superior. Há um interesse crescente no desenvolvimento de métodos para melhor entendimento da fisiopatologia da AOS. A técnica da pressão negativa expiratória (NEP) é um método relativamente simples que avalia a colapsabilidade da via aérea superior durante a vigília. Porém, a metodologia varia muito e a maioria dos estudos utilizou o bocal, que pode não retratar de forma adequada o comportamento da nasofaringe e pode interferir na posição da língua. Adicionalmente, não existem estudos que avaliaram a associação da NEP com variáveis anatômicas da via aérea superior. A pressão crítica de fechamento da faringe (Pcrit) é um método bem estabelecido que reflete o componente anatômico da AOS, porém é realizada durante o sono e envolve metodologia complexa. OBJETIVOS: Realizamos 2 estudos em indivíduos normais e portadores de AOS com o objetivo de: Estudo 1) Determinar a influência da interface e posição sobre a medida da colapsabilidade da via aérea superior durante a vigília avaliada pela NEP. Estudo 2) Avaliar a associação entre a colapsabilidade da via aérea superior durante a vigília medida pela NEP com máscara nasal na posição supina e durante o sono medida pela Pcrit com variáveis anatômicas da via aérea superior avaliadas pela tomografia computadorizada (TC). MÉTODOS: Foram recrutados indivíduos com idade entre 18 e 65 anos com suspeita de AOS referidos do Laboratório do Sono do InCor. Os indivíduos foram submetidos a prova de função pulmonar, polissonografia e NEP em 4 situações: posição sentada e supina utilizando tanto bocal como máscara nasal. A NEP foi avaliada pelo parâmetro V0,2SB/V0,2NEP (relação entre o volume expirado a 0,2 s durante a respiração espontânea (3 expirações precedentes à aplicação da NEP) sobre o volume expirado a 0,2 s durante a aplicação da NEP). Um subgrupo dos indivíduos realizou o exame de Pcrit e TC de via aérea superior. RESULTADOS: Estudo 1) Foram estudados um total de 86 indivíduos (72 homens, idade: 46 ± 12 anos, índice de massa corpórea (IMC): 30,2 ± 4,4 kg/m2, índice de apneia/hipopneia (IAH): 32,9 ± 26,4 eventos/hora). Encontramos uma interação entre interface e posição sobre a colapsabilidade da via aérea superior na análise multivariada (p=0,007), sendo que a via aérea superior foi mais colapsável com bocal do que com máscara nasal na posição sentada. A colapsabilidade da via aérea superior foi maior na posição supina do que sentada quando a NEP foi realizada com máscara nasal. Em contraste, a NEP não foi influenciada pela posição quando avaliada com bocal. A resistência expiratória foi significativamente maior e independente da posição com bocal do que máscara nasal (20,7 cmH2O/L.s-1 vs 8,6 cmH2O/L.s-1 respectivamente, p=0,018). Estudo 2) Vinte e oito indivíduos realizaram a NEP com máscara nasal na posição supina, Pcrit e TC da via aérea superior (idade: 45 ± 13 anos, IMC: 29.4±4.9 kg/m2 e IAH: 30 ± 26 eventos/hora). A NEP e a Pcrit se associaram de maneira semelhante com a área da língua (r=0,646 e r=0,585), volume da língua (r=0,565 e r=0,613), comprimento da faringe (r=0,580 e r=0,611) e IAH (r=0,490 e r=0,531), respectivamente (p < 0,05 para todas as correlações). A NEP e a Pcrit foram significativamente piores em pacientes com AOS grave do que no restante da população (p < 0,05). CONCLUSÕES: Estudo 1) A interface e a posição influenciam a colapsabilidade da via aérea superior medida pela NEP. Propomos que a NEP seja realizada com máscara nasal na posição supina em estudos futuros de avaliação da colapsabilidade da via aérea superior em pacientes sob investigação de AOS. Estudo 2) A NEP avaliada com máscara nasal na posição supina é um método simples e promissor que reflete o componente anatômico da colapsabilidade da via aérea superior de forma similar a Pcrit / INTRODUCTION: Obstructive sleep apnea (OSA) is common in the general population and is characterized by recurrent collapse of the upper airway. There is a growing interest in developing methods for better understanding of OSA pathophysiology. Negative expiratory pressure (NEP) technique is a simple method that evaluates upper airway collapsibility during wakefulness. However, the method of NEP determination varies among published studies and is mostly evaluated with a mouthpiece, which could inadequately reflect the behavior of nasopharynx and also interfere on the tongue position. In addition, there are no studies evaluating the association between NEP and upper airway anatomy. Pharyngeal critical closing pressure (Pcrit) is a well established technique that reflects the anatomical component of OSA, however, it is performed during sleep and requires a complex methodology. OBJECTIVES: We performed 2 studies in OSA and normal subjects with the objectives of: Study 1) To determine the influence of interface and position on the measurement of upper airway collapsibility while awake evaluated by NEP. Study 2) To evaluate the association among upper airway collapsibility while awake evaluated by NEP with nasal mask in supine position and during sleep evaluated by Pcrit with upper airway anatomy evaluated objectively by upper airway computed tomography (CT) scan. METHODS: We recruited subjects with age between 18 and 65 years with suspect OSA referred to the outpatient sleep clinic at the Heart Institute, University of São Paulo. Subjects underwent pulmonary function test, polysomnography and NEP evaluations in four conditions: sitting and supine position either with mouthpiece or with nasal mask. NEP was evaluated by the parameter V0.2SB/V0.2NEP (ratio between the volume exhaled at 0.2 s during stable breathing (3 expirations prior to NEP application) over the volume exhaled at 0.2 s during NEP application). A subgroup of subjects performed Pcrit and upper airway CT evaluations. RESULTS: Study 1) We studied a total of 86 subjects (72 male, age: 46 ± 12 years, body mass index (BMI): 30.2 ± 4.4 kg/m2, apnea/hypopnea index (AHI): 32.9 ± 26.4 events/hour). We found an interaction between interface and position on upper airway collapsibility in multivariate analysis (p=0.007), with the upper airway being more collapsible with mouthpiece than with nasal mask in sitting position. Upper airway collapsibility was higher in supine than in sitting position when NEP was performed with nasal mask. In contrast, NEP was not influenced by position when evaluated with mouthpiece. Expiratory resistance was significantly higher and independent of position with mouthpiece than with nasal mask (20.7 cmH2O/L.s-1 vs 8.6 cmH2O/L.s-1 respectively, p=0.018). Study 2) Twenty-eight subjects performed NEP with nasal mask in supine position, Pcrit and upper airway CT scan (age: 45±13 years, BMI: 29.4 ± 4.9 kg/m2, and AHI: 30 ± 26 events/h). NEP evaluated with nasal mask in supine position and Pcrit were similarly associated with tongue area (r=0.646 and r=0.585), tongue volume (r=0.565 and r=0.613), pharyngeal length (r=0.580 and r=0.611), and AHI (r=0.490 and r=0.531) respectively (p < 0.05 for all comparisons). NEP and Pcrit were significantly worse in patients with severe OSA than the remaining population (p < 0.05). CONCLUSIONS: Study 1) Interface and position influence upper airway collapsibility measured by NEP. We propose NEP to be performed with nasal mask in supine position in future studies of upper airway collapsibility evaluation in patients under investigation for OSA. Study 2) NEP evaluated with nasal mask in supine position is a simple and promising method that is associated with the anatomical component of upper airway collapsibility similarly to Pcrit
12

Neural correlates of human non-REM sleep oscillations. A multimodal functional neuroimaging approach. / Corrélats cérébraux des rythmes du sommeil lent chez l'homme. Etude en neuroimagerie fonctionnelle multimodale.

Dang Vu, Thien Thanh 21 April 2008 (has links)
SUMMARY Non Rapid Eye Movement (NREM) sleep in humans is defined by spontaneous neural activities organized by specific rhythms or oscillations. The aim of this thesis is to characterize, by means of neuroimaging techniques, the shaping of brain function by these physiological rhythms. The studied oscillations are sleep spindles, delta waves and slow oscillation, representing the main identifiable neurophysiological events of human NREM sleep. Sleep spindles are a hallmark of light NREM sleep. They are commonly described on electroencephalographic (EEG) recordings as 11-15 Hz oscillations, lasting more than 0.5 sec and with a typical waxing-and-waning waveform. During deeper stages of NREM sleep, spindles are progressively replaced by a slow wave activity (SWA; 0.5-4 Hz), which encompasses delta waves (1-4 Hz) and slow oscillations (0.5-1 Hz). In combination with EEG, we studied these rhythms using two different functional brain imaging techniques : positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). These studies originally contribute to the understanding of the generating mechanisms and functional roles of NREM sleep oscillations, which are a hallmark of sleep architecture in healthy humans. Neural correlates of NREM sleep oscillations assessed by EEG / PET In this section, we report the analyses of PET data devoted to the study of NREM sleep oscillations. We characterized the brain areas in which activity, measured in terms of regional cerebral blood flow (rCBF), was correlated with EEG spectral power in the spindle (11-15 Hz), delta waves (1-4 Hz) and slow oscillation (0.5-1 Hz) frequency bands, in 23 non-sleep-deprived young healthy volunteers. EEG activity in the spindle frequency band was negatively correlated with rCBF in the thalamus. This result was in agreement with data suggesting the generation of spindles within cortico-thalamo-cortical loops (Steriade, 2006). Spectral power in the delta band was negatively correlated with rCBF in the medial prefrontal cortex, striatum, insula, anterior cingulate cortex, precuneus and basal forebrain, which are structures potentially involved in the modulation of cortical delta waves (Dang-Vu et al., 2005b). The functional brain mapping of slow oscillations was highly similar to the one of delta waves, in keeping with the hypothesis that both types of oscillations share common physiological mechanisms. These results consisted in negative correlations, which means that the cerebral blood flow in these areas was lower when the power in the corresponding frequency band was higher. The different rhythms of NREM sleep are synchronized by the slow oscillation, which alternates a hyperpolarization phase during which cortical neurons remain silent, and a depolarization phase associated with important neuronal firing. The prominent effect of hyperpolarization phases could account for the decrease in blood flow found in PET studies. Indeed, PET has a limited temporal resolution, around one minute, and therefore averages brain activity over relatively long periods, during which hyperpolarization phases predominate. Thus PET imaging does not allow to directly study brief events, lasting one second or so, such as NREM sleep oscillations. Besides, the spectral power values used in PET studies are just an indirect reflection of the appearance of these rhythms during sleep. These considerations justify the use of fMRI because, together with improved spatial resolution, its temporal resolution around one second allows to assess brain responses associated to the occurrence of NREM sleep oscillations, taken as identifiable events. Neural correlates of NREM sleep oscillations assessed by EEG / fMRI The largest section of the thesis is devoted to the use of fMRI in the study of NREM sleep oscillations. We characterized the brain areas in which activity, measured in terms of blood oxygen level dependent (BOLD) signal, was correlated with the occurrence of NREM sleep oscillations. Compared to EEG with PET, EEG recording with simultaneous fMRI was technically much more challenging. In particular, the analysis of EEG data acquired simultaneously with fMRI required a complex signal processing in order to remove all artefacts induced during the scanning procedure. After clean EEG data had been obtained, automatic detection of spindles (Molle et al., 2002), delta waves and slow oscillations (Massimini et al., 2004) was performed according to published criteria, and provided the series of events to be used as regressors in the statistical analysis of fMRI data. The latter assessed the main effects of spindles, delta waves and slow oscillations on BOLD signal changes across the 14 non-sleep-deprived young healthy volunteers selected for this study. Spindles were analysed considering 2 potential subtypes. Indeed, in humans, while most spindles are recorded in central and parietal regions and display a frequency around 14 Hz (fast spindles), others are prominent on frontal derivations with a frequency around 12 Hz (slow spindles). Previous data also show differences between both subtypes in their modulation by age, circadian and homeostatic factors, menstrual cycle, pregnancy and drugs (De Gennaro and Ferrara, 2003). However, no clear evidence of a distinct neurobiological basis for these two subtypes of spindles has been demonstrated so far. After automatic detection of spindles and their differentiation as fast and slow, we showed that the two subtypes were associated with activation of partially distinct thalamo-cortical networks. These data further support the existence of 2 subtypes of sleep spindles modulated by segregated neural networks (Schabus et al., 2007). Slow oscillation has initially been described at the cellular level in animals as an oscillation <1 Hz of membrane potential, alternating a hyperpolarization phase (down) during which cortical neurons are silent and a depolarization phase (up) associated with intense neuronal firing (Steriade, 2006). At the macroscopic level, this slow rhythm is found on human EEG recordings as high amplitude slow waves, defined by a peak-to-peak amplitude of more than 140 µV (Massimini et al., 2004). The slow oscillation also synchronizes other NREM sleep rhythms such as spindles (Molle et al., 2002) and delta waves (defined here as waves of lower peak-to-peak amplitude : between 75 and 140 µV). The organization of NREM sleep by the slow oscillation suggests that NREM sleep should be characterized by increased brain activities associated with the up state of slow oscillation. Indeed, we observed significant BOLD signal changes in relation to both slow waves and delta waves in specific brain areas including inferior and medial frontal gyrus, parahippocampal gyrus, precuneus, posterior cingulate cortex, ponto-mesencephalic tegmentum and cerebellum. All these responses consisted in brain activity increases. These results stand in sharp contrast with earlier sleep studies, in particular PET studies, reporting decreases in brain activity during NREM sleep. Here we showed that NREM sleep cannot be reduced to a state of global and regional brain activity decrease, but is actually an active state during which phasic increases in brain activity are synchronized to the slow oscillation. We then compared brain responses to delta and slow waves respectively and found no significant difference. In agreement with our PET data, this result suggests that slow waves and delta waves share common neurobiological mechanisms. However, when effects of slow and delta waves were tested separately, we observed that slow waves were specifically associated with activation of brainstem and mesio-temporal areas, while delta waves were associated with activation of inferior and medial frontal areas. This result is important in regard to the potential role of slow oscillation in memory consolidation during sleep (Marshall et al., 2006). Indeed, the preferential activation of mesio-temporal areas with high amplitude slow waves suggests that the amplitude of the wave is a crucial factor in the recruitment during sleep of brain structures involved in the processing of memory traces. RESUME Le sommeil lent de lhomme est défini par la présence dactivités neuronales spontanées, organisées sous forme de rythmes ou oscillations spécifiques. Lobjectif des travaux réalisés dans le cadre de cette thèse est de caractériser, par des méthodes de neuroimagerie, le fonctionnement cérébral au cours de ces rythmes physiologiques. Les oscillations que nous avons étudiées sont les fuseaux du sommeil, les ondes delta et les oscillations lentes, représentant les principales activités neurophysiologiques identifiables chez lhomme au cours du sommeil lent. Les fuseaux du sommeil constituent un élément essentiel du sommeil lent léger. Ils sont communément décrits sur les enregistrements électroencéphalographiques (EEG) comme des oscillations de fréquence comprise entre 11 et 15 Hz, dune durée dau moins 0,5 sec, et de morphologie caractéristique daugmentation puis de diminution damplitude. Au cours des stades plus profonds de sommeil lent, les fuseaux sont en grande partie remplacés par une activité donde lente (SWA; 0,5-4 Hz) qui recouvre les ondes delta (1-4 Hz) et les oscillations lentes (0,5-1 Hz). En combinaison à lEEG, nous avons utilisé deux techniques dimagerie fonctionnelle différentes pour étudier ces rythmes: la tomographie par émission de positons (PET) et limagerie en résonance magnétique fonctionnelle (fMRI). Ces études apportent une contribution originale à notre compréhension du sommeil lent chez lhomme sain, par lexploration des mécanismes générationnels de ces oscillations, piliers de larchitecture du sommeil. Corrélats cérébraux des rythmes du sommeil lent en EEG / PET Dans cette section, nous décrivons lutilisation de la PET dans létude des rythmes du sommeil lent. Nous avons caractérisé les régions cérébrales dans lesquelles lactivité, mesurée en terme de débit sanguin cérébral régional (rCBF), était corrélée à la puissance spectrale EEG dans la bande de fréquence des fuseaux (11-15 Hz), des ondes delta (1-4 Hz) et des oscillations lentes (0.5-1 Hz), chez 23 jeunes volontaires sains et non privés de sommeil. Lactivité EEG dans la bande des fuseaux était corrélée négativement avec le rCBF dans le thalamus. Ce résultat est en accord avec les données suggérant la genèse des fuseaux par des boucles dinteraction cortico-thalamo-corticale (Steriade, 2006). La puissance spectrale dans la bande delta était négativement corrélée avec le rCBF au niveau du cortex préfrontal médial, du striatum, de linsula, du cortex cingulaire antérieur, du précuneus et du télencéphale basal, régions potentiellement impliquées dans la modulation des ondes delta corticales (Dang-Vu et al., 2005b). La carte des oscillations lentes était superposable à celle des ondes delta, ce qui suggère que ces deux types doscillations relèvent chez lhomme de mécanismes physiologiques communs. Ces résultats démontraient donc des corrélations négatives, ce qui signifie que le débit sanguin cérébral dans ces régions était dautant plus faible que la puissance dans la bande de fréquence correspondante était élevée. Linterprétation de ce phénomène doit intégrer le fait que les différents rythmes du sommeil lent sont sculptés par loscillation lente, laquelle alterne une phase dhyperpolarisation au cours de laquelle les neurones corticaux sont silencieux, et une phase de dépolarisation au cours de laquelle ils déchargent en bouffées. Leffet prépondérant des phases dhyperpolarisation pourrait expliquer la baisse de débit cérébral démontrée en PET. En effet, cette dernière présente une résolution temporelle limitée, de lordre de la minute, ce qui a pour effet dintégrer lactivité cérébrale sur des périodes de temps relativement longues, au cours desquelles les phases dhyperpolarisation corticale prédominent. Limagerie en PET ne permet pas donc pas détudier directement des événements brefs de lordre de la seconde, tels que les oscillations du sommeil lent. En outre, les valeurs de puissance spectrale utilisées pour caractériser ces rythmes en PET ne reflètent quindirectement leur survenue au cours du sommeil. Ces considérations justifient le recours à limagerie en fMRI, dont la résolution temporelle de lordre de la seconde permet dévaluer les réponses cérébrales associées à la survenue des oscillations du sommeil lent, considérées cette fois comme des événements identifiables. Corrélats cérébraux des rythmes du sommeil lent en EEG / fMRI Dans cette partie, la plus importante, nous décrivons lanalyse en fMRI des rythmes du sommeil lent. Nous avons caractérisé les régions cérébrales dont l'activité, mesurée par le signal BOLD, était corrélée à la survenue des oscillations du sommeil lent. Par rapport à la situation rencontrée en PET, lenregistrement des données EEG nécessaire à la détection des rythmes du sommeil lent, simultanément à lacquisition fMRI, a posé des difficultés techniques considérablement plus grandes. En particulier, linterprétation de lEEG dans ces conditions a nécessité un traitement précis du signal afin den éliminer les éléments artéfactuels qui le contaminent. Ce nest quaprès ce processus que la détection automatique des fuseaux (Molle et al., 2002), des ondes delta et des oscillations lentes (Massimini et al., 2004) selon des critères publiés a pu seffectuer, permettant dobtenir les séries dévénements qui furent entrés comme régresseurs dans lanalyse statistique des données fMRI. Cette dernière évalue leffet principal des fuseaux, ondes delta et oscillations lentes sur les variations du signal BOLD chez lensemble des 14 jeunes volontaires sains et non privés de sommeil sélectionnés pour létude. En ce qui concerne les fuseaux, ils furent subdivisés en 2 sous-types. Chez lhomme en effet, alors que la grande majorité des fuseaux sont enregistrés dans les régions centrales et pariétales, avec une fréquence denviron 14 Hz (fuseaux rapides), dautres fuseaux dits lents (environ 12 Hz) prédominent dans les régions frontales. Des données antérieures rapportent également des différences entre ces deux sous-types en ce qui concerne leur modulation par des paramètres comme lâge, les facteurs circadiens et homéostatiques, la phase du cycle menstruel, la grossesse et certains agents pharmacologiques (De Gennaro and Ferrara, 2003). Cependant, aucune description formelle dun substrat biologique distinct navait encore été établie pour ces 2 sous-types de fuseaux. Après détection automatique des fuseaux et leur ségrégation en fuseaux rapides et lents, nous avons pu démontrer que les 2 sous-types de fuseaux étaient associés à des activations dans des réseaux thalamo-corticaux partiellement distincts. Ces données apportent donc des arguments pour établir lexistence de 2 sous-types biologiquement différenciés de fuseaux du sommeil (Schabus et al., 2007). Loscillation lente du sommeil lent a été décrite initialement au niveau cellulaire chez lanimal comme une oscillation de fréquence <1Hz et qui alterne une phase dhyperpolarisation (ou down), au cours de laquelle les neurones corticaux sont silencieux, et une phase de dépolarisation (ou up) qui correspond à une période de décharges neuronales intenses (Steriade, 2006). Chez lhomme, cette oscillation lente est également retrouvée sur les enregistrements EEG de surface sous forme dondes lentes de haute amplitude, définies par une amplitude pic-à-pic de plus de 140 µV (Massimini et al., 2004). Loscillation lente synchronise aussi dautres rythmes du sommeil lent tels les fuseaux (Molle et al., 2002) et les ondes delta (définies ici par des ondes de plus basse amplitude pic-à-pic : entre 75 et 140 µV). Lorganisation du sommeil lent par ces oscillations lentes suggère que le sommeil lent devrait être marqué par des activations cérébrales survenant en synchronie avec les phases up des oscillations lentes. De fait, nous avons observé des variations significatives de signal BOLD en association avec les ondes lentes et delta dans des régions cérébrales spécifiques incluant le gyrus frontal inférieur et médial, le gyrus parahippocampique, le precuneus, le cortex cingulaire postérieur, le tegmentum ponto-mésencéphalique et le cervelet. Ces variations étaient positives dans toutes les régions mises en évidence, ce qui traduit une augmentation dactivité. Ces résultats sont originaux en ce quils suggèrent que le sommeil lent, contrairement à ce qui était conclu des précédentes études du sommeil chez lhomme (particulièrement en PET), ne se réduit pas à une hypoactivation cérébrale globale et régionale. Au contraire, nos données montrent que le sommeil lent saccompagne dune activation cérébrale phasique rythmée par la phase de dépolarisation des oscillations lentes. Nous avons ensuite comparé les réponses cérébrales aux ondes delta et celles aux ondes lentes. Aucune région cérébrale ne présentait dactivité significativement différente en fonction des 2 types dondes. En accord avec nos données PET, ce résultat suggère quil ny a pas de différence formelle sur le plan des mécanismes neurobiologiques entre ondes lentes et ondes delta. Toutefois, lorsque les effets des ondes lentes et delta furent testés séparément, nous avons observé que les ondes lentes activaient spécifiquement le tronc cérébral et le cortex mésio-temporal alors que les ondes delta activaient les aires frontales inférieure et médiale. Cet résultat est important si lon considère en particulier le rôle potentiel des oscillations lentes dans la consolidation des traces mnésiques au cours du sommeil (Marshall et al., 2006). Lactivation préférentielle des aires mésio-temporales avec les ondes lentes de haute amplitude suggère en effet que lamplitude de londe est un paramètre déterminant dans le recrutement au cours du sommeil de structures cérébrales impliquées dans le traitement des traces mnésiques.

Page generated in 0.0513 seconds