• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sliding wear performance of nickel-based cermet coatings composed of WC and Al2O3 nanosized particles

Farrokhzad, M.A., Khan, Tahir I. 07 July 2016 (has links)
No / This paper investigates the sliding wear performance of two types of co-electrodeposited cermet coatings com- posed of nano-sized tungsten carbide (WC) and combined tungsten carbide and alumina (Al2O3) particles incor- porated in a nickel matrix. For this purpose, the effects of alternating the ceramic particle concentration in the electrolyte solutions on microhardness of the coatings and also the effect of applied loads on wear performance of the coatings have been studied using ball-on-flat sliding wear tests. The wear track volumes and the progres- sion of wear depths as a function of time and at three applied loads were recorded and wear track morphologies were investigated using FE-SEM and microhardness testing. The results showed that microstructure, microhard- ness and wear performance of the coatings composed of WC improved when Al2O3 particles were introduced into the matrix. It was also found that the rule of mixtures for composite materials provides a good explanation for microhardness behaviour while Archard equation can explain the changes in wear performance due to the hardness and microstructural changes. / Alberta Innovates Future Technologies (Nanoworks) Canada
2

The wear of bainitic and pearlitic steels

Garnham, John Ernest January 1995 (has links)
The rolling-sliding dry-wear behaviour of a series of bainitic steels and a standard pearlitic rail steel have been compared over a range of contact stress and creepage conditions applicable to the British Rail network. A rolling-sliding wear machine has been constructed - LEROS - which allows very high contact stresses to be combined with high creepages under well controlled conditions. Materials were tested on LEROS and on an Amsler machine. Limited vibration analyses were carried out on both machines and compared with the frequencies of disc surface periodic undulations. No direct linkage was determined. Despite better standard mechanical properties, the wear resistance of lower carbon bainitic steels was inferior to that of the pearlitic steel. A bainitic steel with the same carbon content as the pearlitic steel wore a little less, but at considerable expense to the pearlitic wheel steel counter-material in the wear couple. The wear resistance of bainitic steels depends upon the volume fraction of hard phase, such as carbide and martensite-austenite phase, for rolling-sliding as well as other types of dry wear loading. Pearlitic steel performs exceptionally well under certain rolling-sliding conditions, such as the majority seen in these tests, since the lamellar microstructure is modified so as to present a greater area fraction of carbide hard phase at the wear surface, a fraction in excess of bulk volume fraction. Recommendations are made for the dry wear applicability of the steels.
3

REDESIGN OF A TRIBOLOGICAL TEST MACHINE

Hsiung, Daniel January 2016 (has links)
The present work deals with developing a tribological test machine that had been built earlier but did not function properly. It was giving out abnormal noises and vibrations and was not corresponding to its desired functions. In this study, the root of these problems is analyzed and some solutions are suggested by developing a new construction concept for the machine.
4

A pre-study for functional coatings evaluated on light metals to be applied on a new HPDC Mg-alloy : Investigating tribological and thermophysical properties, as-cast and coated

Albo Zieme, Louise, Bergstedt, Pontus January 2021 (has links)
Magnesium with two-thirds of the density compared to aluminium and one-quarter of steel, intrigues product developers and material scientists due to the light metal’s excellent combination of strength to weight ratio as well as their capability of being produced as a High Pressure Die Cast component compared to other ferrous or light metal alloys.   However, a magnesium alloy inherits some concerning drawbacks, limiting the exploitation in structural applications and mechanical design such as automotive, heavy machinery and aerospace components. The need for a magnesium alloy that could withstand a sufficient amount of wear, temperature and corrosive environment, leads towards the investigation and evaluation of a suitable, functional coating as a solution to exploit the evident advantages a magnesium alloy exhibits. A substantial amount of research is required in order to reduce an existing knowledge gap that is the ongoing development in the search for a sufficient functional coating and adherence capability to the highly reactive substrate that is a magnesium alloy.   This industrial master thesis is an early stage investigation to evaluate how the currently used aluminium substrate with an electrodeposited coating relate and compares to a heat-treated electroless deposited coating through tribological and thermophysical induced stresses. These properties are tested with proven industrial standard methods resulted in a comprehensive conclusion and discussion regarding the feasibility of applying the coating onto a commercial magnesium alloy closely related to the Mg-alloy developed by Husqvarna and thereby contributing to technological advances to the highly relevant topic within product development in materials engineering.

Page generated in 0.0884 seconds