• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 159
  • 20
  • 10
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 208
  • 208
  • 208
  • 40
  • 37
  • 24
  • 23
  • 23
  • 20
  • 20
  • 18
  • 16
  • 15
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

An accelerated conjugate direction procedure for slope stability analysis

Musa, Zulkarnain, 1964- January 1988 (has links)
CSLIP2 (De Natale, 1987) is the only slope stability program that utilizes a "direction set" optimization routine in its search for the minimum safety factor. However, CSLIP2 which employs Powell's Conjugate Direction Method permits only the horizontal and vertical directions (x and y) to be used as the initial direction set. The efficiency of the existing search routine is improved by replacing the x-y coordinate directions with initial directions that are parallel to and perpendicular to the principal axis of the safety factor contours.
92

In situ testing of Gila Conglomerate with application to probabilistic slope stability

Kidd, David Alan, 1956- January 1989 (has links)
In this study the shear strength parameters for a consolidated, well-cemented boulder conglomerate at the Cyprus Miami Copper Mine are determined by a newly developed field test. The values obtained are used to investigate the probability of failure of pit slopes cut into the conglomerate. Any boulder conglomerate is impossible to test accurately with conventional laboratory techniques due to its large particle sizes and the destruction of cementation by conventional sampling methods. For these reasons a simple in situ test was developed which could be used in conjunction with laboratory techniques and analytical procedures to estimate the in situ strength properties of the Gila Conglomerate. The variability in the testing of the shear strength parameters of Gila Conglomerate make a probabilistic approach to design appropriate.
93

Influence of Median Grain Size Ratio on the Strength and Liquefaction Potential of Loose Granular Fills

Unknown Date (has links)
The characterization of silty soils is usually designated by the percentage of silt contained within the soil matrix, along with the soil’s void ratio, which is used to describe the soil’s current state. The use of these parameters to assess a soil’s strength and undrained behavior is limited when finer material is contained within the soil. Therefore, additional parameters must be considered in order to correctly assess the strength and liquefaction potential of silty soils. These additional parameters include the skeleton void ratio, equivalent void ratio and granulometric factors. The current research investigates the influence of granulometric parameters, specifically the Median Grain Size Ratio (D50/d50), denoted as μDR (or MDR within graphs and charts), on the strength and liquefaction potential of loose silty sands. A series of undrained monotonic triaxial compression tests (σ3’= 69, 83, and 103 kPa) are performed on reconstituted soil samples, using three different base sand samples and a constant silt material. As a result, three distinct median grain size ratios (μDR = 4.2, 6.75, and 9) were tested with fines content ranging from 0-30% for each μDR. The undrained shear strength at all confining pressures tends to increase with in μDR; beyond 10% fines content there was no noticeable influence of μDR. At any μDR the excess PWP is higher than that of clean sand, when fines content is larger than 5% fines content. The slope of the instability line and phase transformation line are directly affected by the μDR and fines content, with an increase in the instability line and decrease in the phase transformation line with a growing μDR. The results indicate loose granular fills can be designed to be stronger and more resilient under extreme conditions by careful choice of materials in which the μDR>6.75 and the fines content does not exceed 10%. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2016. / FAU Electronic Theses and Dissertations Collection
94

Soil water supplying capacity as a factor affecting revegetation of cut slopes.

January 2007 (has links)
Chiu, Ming Ho. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 139-155). / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgements --- p.v / Table of Contents --- p.vii / List of Tables --- p.xi / List of Figures --- p.xiii / List of Plates --- p.xiv / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Introduction --- p.1 / Chapter 1.1.1 --- Environment of Hong Kong --- p.1 / Chapter 1.1.1.1 --- Flat land area --- p.1 / Chapter 1.1.1.2 --- Population --- p.2 / Chapter 1.1.1.3 --- Climate --- p.2 / Chapter 1.1.2 --- Landslides in Hong Kong --- p.4 / Chapter 1.1.2.1 --- Landslide history --- p.4 / Chapter 1.1.2.2 --- Government actions on landslide prevention --- p.7 / Chapter 1.1.3 --- Slopes in Hong Kong --- p.8 / Chapter 1.1.4 --- Slope stabilization --- p.10 / Chapter 1.1.4.1 --- Conventional methods of slope stabilization --- p.10 / Chapter 1.1.4.2 --- Biotechnical stabilization --- p.13 / Chapter 1.2 --- Situation in Hong Kong --- p.16 / Chapter 1.2.1 --- Slope protection in the past --- p.16 / Chapter 1.2.2 --- Government action on improving slope appearance --- p.16 / Chapter 1.2.3 --- Proprietary slope greening techniques --- p.19 / Chapter 1.3 --- Vegetation growth on slopes --- p.22 / Chapter 1.3.1 --- Basic requirements of plants --- p.22 / Chapter 1.3.2 --- Potential problems of proprietary systems on shotcreted cut slopes --- p.24 / Chapter 1.3.2.1 --- Steep gradient --- p.24 / Chapter 1.3.2.2 --- Thin soil --- p.24 / Chapter 1.3.2.3 --- Rainfall seasonality --- p.25 / Chapter 1.4 --- Current study --- p.26 / Chapter 1.4.1 --- Objectives --- p.26 / Chapter 1.4.2 --- Significance --- p.26 / Chapter 1.4.3 --- Thesis layout --- p.27 / Chapter Chapter 2 --- Soil water status and vegetation of cut slopes --- p.30 / Chapter 2.1 --- Introduction --- p.30 / Chapter 2.2 --- Materials and methods --- p.36 / Chapter 2.2.1 --- Study site --- p.36 / Chapter 2.2.2 --- In situ measurements and substrate sampling --- p.43 / Chapter 2.2.3 --- Physical properties of substrates on slopes --- p.43 / Chapter 2.2.3.1 --- Slope angle --- p.43 / Chapter 2.2.3.2 --- Substrate thickness --- p.43 / Chapter 2.2.3.3 --- Soil moisture --- p.43 / Chapter 2.2.3.4 --- Soil texture --- p.43 / Chapter 2.2.3.5 --- Bulk density --- p.44 / Chapter 2.2.3.6 --- Water retention capacity --- p.44 / Chapter 2.2.4 --- Chemical properties of substrates on slopes --- p.44 / Chapter 2.2.4.1 --- pH --- p.44 / Chapter 2.2.4.2 --- Conductivity --- p.45 / Chapter 2.2.4.3 --- Organic matter --- p.45 / Chapter 2.2.4.4 --- Total Kjeldahl nitrogen --- p.45 / Chapter 2.2.4.5 --- Mineral nitrogen (ammonium and nitrate) --- p.45 / Chapter 2.2.4.6 --- Carbon:Nitrogen --- p.46 / Chapter 2.2.4.7 --- Total phosphorus --- p.46 / Chapter 2.2.4.8 --- Available phosphorus --- p.46 / Chapter 2.2.4.9 --- Major extractable cations --- p.46 / Chapter 2.2.5 --- Green coverage on slopes --- p.46 / Chapter 2.2.6 --- Statistical analysis --- p.47 / Chapter 2.3 --- Results --- p.47 / Chapter 2.3.1 --- Rainfall characteristics --- p.47 / Chapter 2.3.2 --- Soil moisture --- p.49 / Chapter 2.3.3 --- Green coverage --- p.52 / Chapter 2.3.4 --- Physical properties of substrate on slopes --- p.55 / Chapter 2.3.5 --- Chemical properties of substrate on slopes --- p.57 / Chapter 2.4 --- Discussion --- p.61 / Chapter 2.4.1 --- Soil moisture and vegetation growth --- p.61 / Chapter 2.4.2 --- Soil nutrients and vegetation growth --- p.66 / Chapter 2.4.3 --- Other substrate properties and vegetation growth --- p.69 / Chapter 2.5 --- Summary --- p.75 / Chapter Chapter 3 --- Surface runoff and soil erosion of cut slopes --- p.76 / Chapter 3.1 --- Introduction --- p.76 / Chapter 3.2 --- Materials and methods --- p.84 / Chapter 3.2.1 --- Study site --- p.84 / Chapter 3.2.2 --- Experimental setup --- p.84 / Chapter 3.2.3 --- Surface runoff and soil loss --- p.88 / Chapter 3.2.4 --- Nutrient loss in runoff --- p.89 / Chapter 3.2.4.1 --- Total Kjeldahl Nitrogen --- p.89 / Chapter 3.2.4.2 --- Mineral nitrogen (ammonium and nitrate) --- p.89 / Chapter 3.2.4.3 --- Total phosphorus --- p.89 / Chapter 3.2.4.4 --- Available phosphorus --- p.90 / Chapter 3.2.5 --- Other substrate properties --- p.90 / Chapter 3.2.5.1 --- Soil texture --- p.90 / Chapter 3.2.5.2 --- Bulk density --- p.90 / Chapter 3.2.5.3 --- Soil compaction --- p.90 / Chapter 3.2.5.4 --- Water retention capacity --- p.90 / Chapter 3.2.5.5 --- Organic matter --- p.90 / Chapter 3.2.6 --- Vegetation coverage and green coverage on slope --- p.91 / Chapter 3.2.7 --- Statistical analysis --- p.91 / Chapter 3.3 --- Results --- p.91 / Chapter 3.3.1 --- Meteorological characteristics --- p.91 / Chapter 3.3.2 --- Surface runoff and runoff coefficient --- p.92 / Chapter 3.3.2.1 --- Surface runoff and runoff coefficient between different treatments --- p.92 / Chapter 3.3.2.2 --- Surface runoff and runoff coefficient between different proprietary systems --- p.97 / Chapter 3.3.3 --- Soil loss --- p.98 / Chapter 3.3.3.1 --- Soil loss between different treatments --- p.98 / Chapter 3.3.3.2 --- Soil loss between different proprietary systems --- p.99 / Chapter 3.3.4 --- Nutrient loss --- p.99 / Chapter 3.3.4.1 --- Nutrient loss between different treatments --- p.99 / Chapter 3.3.4.2 --- Nutrient loss between different proprietary systems --- p.104 / Chapter 3.3.5 --- Substrate properties of proprietary systems --- p.104 / Chapter 3.3.6 --- Vegetation coverage and green coverage --- p.107 / Chapter 3.3.7 --- Relationship between rainfall and erosional parameters --- p.110 / Chapter 3.4 --- Discussion --- p.117 / Chapter 3.4.1 --- Surface runoff and runoff coefficient between different treatments --- p.117 / Chapter 3.4.2 --- Relationship between rainfall characteristics and surface runoff --- p.122 / Chapter 3.4.3 --- Soil loss between different treatments --- p.125 / Chapter 3.4.4 --- "Relationship between rainfall characteristics, surface runoff and soil loss" --- p.126 / Chapter 3.4.5 --- Nutrient loss between different treatments --- p.128 / Chapter 3.4.6 --- Surface runoff and erosional losses between different proprietary systems --- p.129 / Chapter 3.5 --- Summary --- p.132 / Chapter Chapter 4 --- Conclusions --- p.134 / Chapter 4.1 --- Summary of major findings --- p.134 / Chapter 4.2 --- Implications of the study --- p.136 / Chapter 4.3 --- Limitations of the study --- p.137 / Chapter 4.4 --- Suggestions for further investigation --- p.138 / References --- p.139 / Appendices --- p.156
95

Finite element analysis of slope stability

Wanstreet, Pinar. January 2007 (has links)
Thesis (M.S.)--West Virginia University, 2007. / Title from document title page. Document formatted into pages; contains xii, 86 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 80-82).
96

Centrifuge modeling of the seismic performance of pile supported wharves on sloping rockfill

Schlechter, Scott M. 08 January 2001 (has links)
Graduation date: 2001
97

Assessment of some triggering mechanisms associated with submarine slope failures on continental slopes utilizing centrifuge testing /

Parsons, Sterling, January 2005 (has links)
Thesis (M.Eng.)--Memorial University of Newfoundland, 2005. / Restricted until October 2007. Bibliography: leaves 128-137.
98

The design and performance of a pressure chamber for testing soil nails in loose fill

Junaideen, Sainulabdeen Mohamed. January 2001 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2001. / Includes bibliographical references (leaves 119-123).
99

Response of micropiles in earth slopes from large-scale physical model tests

Bozok, Omer. Loehr, J. Erik. January 2009 (has links)
Title from PDF of title page (University of Missouri--Columbia, viewed on Feb 17, 2010). The entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file. Thesis advisor: Dr. J. Erik Loehr. Includes bibliographical references.
100

The study of ground-water levels and infiltration of rainwater in the steep natural slopes of Hong Kong.

Koo, Yuk-chan, January 1978 (has links)
Thesis (M. Phil.)--University of Hong Kong, 1979.

Page generated in 0.0712 seconds