• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

LONG-TERM HIGHWALL STABILITY IN THE NORTHWESTERN POWDER RIVER BASIN, WYOMING AND MONTANA

Smith, William K, Smith, William K January 1980 (has links)
Time-dependent behavior of natural and excavated slopes in sedimentary rocks is a subject that is poorly understood at present but that is now an important consideration in the design, operation, and reclamation of energy-extraction facilities, in part because of the environmental considerations mandated by the Surface Mining Control and Reclamation Act of 1977 (Public Law 95-87). A slide in an abandoned, unreclaimed strip mine northwest of Sheridan, Wyoming, has been analyzed as an example of a long-term slope failure in the region. This slide occurred in early 1975, some 20 years after cessation of mining. This investigation used Spencer's limiting equilibrium method and an elastic-plastic finite element method incorporating the Drucker-Prager yield criterion. This slide was found to fit the model for time-dependent failure proposed by Nelson and Thompson (1977) in which the time to failure is related to Skempton's residual factor. The Nelson-Thompson hypothesis is extended for use with the three-dimensional Drucker-Prager yield criterion. The residual factor (R) may be computed from the factors of safety with respect to peak (F(p)) and residual (Fᵣ) material properties, using either the Mohr-Coulomb or Drucker-Prager criterion, by the relationship R = [(F(p) - 1)/(F(p)-Fᵣ)] At the present time, the Spencer limiting equilibrium analysis is a more usable tool for ordinary slope design than the elastic-plastic finite element analysis because of the speed, simplicity, and ease of including the effects of ground water in the Spencer analysis.

Page generated in 0.1068 seconds