Spelling suggestions: "subject:"smale flows"" "subject:"imale flows""
1 |
Smale Flows on Three Dimensional ManifoldsHaynes, Elizabeth Lydia 01 May 2012 (has links)
We discuss how to realize simple Smale Flows on 3-manifolds. We focus on three questions: (1) What are the topological conjugate classes of Lorenz Smale flows that can be realized on S3? (2) Which 3-manifolds can also admit a Lorenz Smale flow? (3) What are the topological conjugate classes of simple Smale flows whose saddle set can be modeled by &nu(0+,0+,0,0) can be realized on S3? This dissertation extends the work of M. Sullivan and B. Yu.
|
2 |
A ZETA FUNCTION FOR FLOWS WITH L(−1,−1) TEMPLATEAL-Hashimi, Ghazwan Mohammed 01 December 2016 (has links) (PDF)
In this dissertation, we study the flows on R3 associated with a nonlinear system differential equation introduced by Clark Robinson in [46]. The periodic orbits are modeled by a semi-flow on the L(−1,−1) template. It is known that these are positive knots, but need not have positive braid presentations. Here we prove that they are fibered. We investigate their linking and we construct a zeta-function that counts periodic orbits according to their twisting. This extends work by M. Sullivan in [55], and [57].
|
3 |
Lyapunov graph in the study of Smale flows and Morse-Novikov flows = Grafo de Lyapunov no estudo dos fluxos de Smale e fluxos de Morse-Novikov / Grafo de Lyapunov no estudo dos fluxos de Smale e fluxos de Morse-NovikovEspiritu Ledesma, Guido Gerson, 1985- 24 August 2018 (has links)
Orientador: Ketty Abaroa de Rezende / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-24T17:12:31Z (GMT). No. of bitstreams: 1
EspirituLedesma_GuidoGerson_D.pdf: 1229937 bytes, checksum: 00f2d538b5b2a2c4147d828351f4ef16 (MD5)
Previous issue date: 2014 / Resumo: Neste trabalho, usamos os grafos de Lyapunov como uma ferramenta combinat{\'o}ria para obter classifica\c{c}{\~o}es completas de fluxos Smale sobre $\ss$ e fluxos Morse-Novikov sobre superf{\'i}cies orient{\'a}veis e n{\~a}o orient{\'a}veis. Esta classifica\c{c}{\~a}o consiste em obter condi\c{c}{\~o}es necess{\'a}rias e suficientes que devem ser satisfeitas por um grafo de Lyapunov abstrato de forma a ser associado a um fluxo Smale sobre $\ss$ ou um fluxo Morse-Novikov sobre uma superf{\'i}cie respectivamente. Assim nesta tese de doutorado obtemos os seguintes resultados: \begin{enumerate} \item As condições locais que devem ser satisfeitas por cada vértice do grafo de Lyapunov, assim como as condições globais que devem ser satisfeitas pelos grafos para estarem associados a um fluxo Smale sobre $\ss$ ou a um fluxo Morse-Novikov sobre uma superfície s{\~a}o determinadas. \item A realização destes grafos abstratos sujeita {\'a}s condições determinadas acima, como fluxos Smale sobre $\ss$ ou fluxos Morse-Novikov sobre superfícies respectivamente, são obtidas. \end{enumerate} / Abstract: In this work Lyapunov graphs are used as a combinatorial tool in order to obtain a complete classification of Smale flows on $\ss$ and Morse-Novikov flows on orientable and non-orientable surfaces. This classification consists in determining necessary and sufficient conditions that must be satisfied by an abstract Lyapunov graph so that it is associated to a Smale flow on $\ss$ or to a Morse-Novikov flow on a surface respectively.\\ In summary in this doctoral thesis we obtain the following results: \begin{enumerate} \item The local conditions that must be satisfied by each vertex on a Lyapunov graph is determinated as well as the global conditions on the graph in order for it to be associated to a Smale flow on $\ss$ or a Morse-Novikov flow on a surface. \item The realization of these graphs subject to the conditions found above as Smale flows on $\ss$ or as Morse-Novikov flows on surfaces respectively is obtained. \end{enumerate} / Doutorado / Matematica / Doutor em Matemática
|
Page generated in 0.0452 seconds