Spelling suggestions: "subject:"small antenna"" "subject:"tmall antenna""
21 |
Antenna Shape Synthesis Using Characteristic Mode ConceptsEthier, Jonathan L. T. 26 October 2012 (has links)
Characteristic modes (CMs) provide deep insight into the electromagnetic behaviour of any arbitrarily shaped conducting structure because the CMs are unique to the geometry of the object. We exploit this very fact by predicting a perhaps surprising number of important antenna metrics such as resonance frequency, radiation efficiency and antenna Q (bandwidth) without needing to specify a feeding location. In doing so, it is possible to define a collection of objective functions that can be used in an optimizer to shape-synthesize antennas without needing to define a feed location a priori. We denote this novel form of optimization “feedless” or “excitation-free” antenna shape synthesis. Fundamentally, we are allowing the electromagnetics to dictate how the antenna synthesis should proceed and are in no way imposing the physical constraints enforced by fixed feeding structures. This optimization technique is broadly applied to three major areas of antenna research: electrically small antennas, multi-band antennas and reflectarrays. Thus, the scope of applicability ranges from small antennas, to intermediate sizes and concludes with electrically large antenna designs, which is a testament to the broad applicability of characteristic mode theory. Another advantage of feedless electromagnetic shape synthesis is the ability to synthesize antennas whose desirable properties approach the fundamental limits imposed by electromagnetics. As an additional benefit, the feedless optimization technique is shown to have greater computational efficiency than traditional antenna optimization techniques.
|
22 |
Antenna Shape Synthesis Using Characteristic Mode ConceptsEthier, Jonathan L. T. 26 October 2012 (has links)
Characteristic modes (CMs) provide deep insight into the electromagnetic behaviour of any arbitrarily shaped conducting structure because the CMs are unique to the geometry of the object. We exploit this very fact by predicting a perhaps surprising number of important antenna metrics such as resonance frequency, radiation efficiency and antenna Q (bandwidth) without needing to specify a feeding location. In doing so, it is possible to define a collection of objective functions that can be used in an optimizer to shape-synthesize antennas without needing to define a feed location a priori. We denote this novel form of optimization “feedless” or “excitation-free” antenna shape synthesis. Fundamentally, we are allowing the electromagnetics to dictate how the antenna synthesis should proceed and are in no way imposing the physical constraints enforced by fixed feeding structures. This optimization technique is broadly applied to three major areas of antenna research: electrically small antennas, multi-band antennas and reflectarrays. Thus, the scope of applicability ranges from small antennas, to intermediate sizes and concludes with electrically large antenna designs, which is a testament to the broad applicability of characteristic mode theory. Another advantage of feedless electromagnetic shape synthesis is the ability to synthesize antennas whose desirable properties approach the fundamental limits imposed by electromagnetics. As an additional benefit, the feedless optimization technique is shown to have greater computational efficiency than traditional antenna optimization techniques.
|
23 |
Towards an end-to-end multiband OFDM system analysisSaleem, Rashid January 2012 (has links)
Ultra Wideband (UWB) communication has recently drawn considerable attention from academia and industry. This is mainly owing to the ultra high speeds and cognitive features it could offer. The employability of UWB in numerous areas including but not limited to Wireless Personal Area Networks, WPAN's, Body Area Networks, BAN's, radar and medical imaging etc. has opened several avenues of research and development. However, still there is a disagreement on the standardization of UWB. Two contesting radios for UWB are Multiband Orthogonal Frequency Division Multiplexing (MB-OFDM) and DS-UWB (Direct Sequence Ultra Wideband). As nearly all of the reported research on UWB hasbeen about a very narrow/specific area of the communication system, this thesis looks at the end-to-end performance of an MB-OFDM approach. The overall aim of this project has been to first focus on three different aspects i.e. interference, antenna and propagation aspects of an MB-OFDM system individually and then present a holistic or an end-to-end system analysis finally. In the first phase of the project the author investigated the performance of MB-OFDM system under the effect of his proposed generic or technology non-specific interference. Avoiding the conventional Gaussian approximation, the author has employed an advanced stochastic method. A total of two approaches have been presented in this phase of the project. The first approach is an indirect one which involves the Moment Generating Functions (MGF's) of the Signal-to-Interference-plus-Noise-Ratio (SINR) and the Probability Density Function (pdf) of the SINR to calculate the Average Probabilities of Error of an MB-OFDM system under the influence of proposed generic interference. This approach assumed a specific two-dimensional Poisson spatial/geometric placement of interferers around the victim MB-OFDM receiver. The second approach is a direct approach and extends the first approach by employing a wider class of generic interference. In the second phase of the work the author designed, simulated, prototyped and tested novel compact monopole planar antennas for UWB application. In this phase of the research, compact antennas for the UWB application are presented. These designs employ low-loss Rogers duroid substrates and are fed by Copla-nar Waveguides. The antennas have a proposed feed-line to the main radiating element transition region. This transition region is formed by a special step-generating function-set called the "Inverse Parabolic Step Sequence" or IPSS. These IPSS-based antennas are simulated, prototyped and then tested in the ane-choic chamber. An empirical approach, aimed to further miniaturize IPSS-based antennas, was also derived in this phase of the project. The empirical approach has been applied to derive the design of a further miniaturized antenna. More-over, an electrical miniaturization limit has been concluded for the IPSS-based antennas. The third phase of the project has investigated the effect of the indoor furnishing on the distribution of the elevation Angle-of-Arrival (AOA) of the rays at the receiver. Previously, constant distributions for the AOA of the rays in the elevation direction had been reported. This phase of the research has proposed that the AOA distribution is not fixed. It is established by the author that the indoor elevation AOA distributions depend on the discrete levels of furnishing. A joint time-angle-furnishing channel model is presented in this research phase. In addition, this phase of the thesis proposes two vectorial or any direction AOA distributions for the UWB indoor environments. Finally, the last phase of this thesis is presented. As stated earlier, the overall aim of the project has been to look at three individual aspects of an MB-OFDM system, initially, and then look at the holistic system, finally. Therefore, this final phase of the research presents an end-to-end MB-OFDM system analysis. The interference analysis of the first phase of the project is revisited to re-calculate the probability of bit error with realistic/measured path loss exponents which have been reported in the existing literature. In this method, Gaussian Quadrature Rule based approximations are computed for the average probability of bit error. Last but not the least, an end-to-end or comprehensive system equation/impulse response is presented. The proposed system equation covers more aspects of an indoor UWB system than reported in the existing literature.
|
24 |
Antenna Shape Synthesis Using Characteristic Mode ConceptsEthier, Jonathan L. T. January 2012 (has links)
Characteristic modes (CMs) provide deep insight into the electromagnetic behaviour of any arbitrarily shaped conducting structure because the CMs are unique to the geometry of the object. We exploit this very fact by predicting a perhaps surprising number of important antenna metrics such as resonance frequency, radiation efficiency and antenna Q (bandwidth) without needing to specify a feeding location. In doing so, it is possible to define a collection of objective functions that can be used in an optimizer to shape-synthesize antennas without needing to define a feed location a priori. We denote this novel form of optimization “feedless” or “excitation-free” antenna shape synthesis. Fundamentally, we are allowing the electromagnetics to dictate how the antenna synthesis should proceed and are in no way imposing the physical constraints enforced by fixed feeding structures. This optimization technique is broadly applied to three major areas of antenna research: electrically small antennas, multi-band antennas and reflectarrays. Thus, the scope of applicability ranges from small antennas, to intermediate sizes and concludes with electrically large antenna designs, which is a testament to the broad applicability of characteristic mode theory. Another advantage of feedless electromagnetic shape synthesis is the ability to synthesize antennas whose desirable properties approach the fundamental limits imposed by electromagnetics. As an additional benefit, the feedless optimization technique is shown to have greater computational efficiency than traditional antenna optimization techniques.
|
25 |
Antenna Implants and Feasibility of Performance Limitations : AStudy of Radiation Efficiency on Electrically Small Antenna Implants with Finite Conductivity and Size / Antennimplantat och rimlighetsbedömning av dess prestandabegränsningar : En studie gällande effektivitet för elektriskt små antennimplant av realistisk konduktivitet och storlekAlgarp, Erik January 2022 (has links)
Antenna implants are used to establish a telemetry link to enable wireless data transfer, suitable for telemedicine and other medical applications. Inbody environments with water-based tissues lead to severe power absorption, making signal strength and radiation efficiency challenging yet central performance aspects of antenna implants. Fundamental performance limits exist regarding radiation efficiency; however, these limits consider theoretically ideal Hertzian dipoles. A semi-analytical model is used to evaluate the feasibility of previously determined fundamental bounds and the optimal dipole solution, both with respect to physical necessities of finite material conductivity and antenna size. This study uses a spherical model to represent a simplified in-body environment with various phantom compositions. Furthermore, the study focuses on implants operating within the Medical Implant Communication System (MICS) frequency band, but models and methods are not restricted to the considered frequency. The work contributes to the field of implantable antennas in several aspects; evaluating the feasibility of fundamental bounds, establishing more realistic performance limits, and determining the optimal dipole solution with respect to radiation efficiency. Other findings are presented in related areas, particularly concerning conductor loss and evaluation of the impedance for antennas inside a high-loss phantom. Moreover, the work presents a suggested method to measure electrically small magnetic dipole antennas. Methods and models are documented in a substantial theoretical derivation, and findings are verified using independent methods. Neglecting necessary antenna aspects like finite size and conductivity can lead to faulty conclusions on implant performance. Providing a more realistic performance target helps predict the performance of realistic antenna designs. Ultimately, increased knowledge of implanted antennas simplifies the design process to achieve high-performance implants. / Antennimplant används för att etablera en telemetrilänk som möjliggör trådlös dataöverföring, exempelvis användbart inom telemedicin och andra medicinska tillämpningar. Vattenbaserade kroppsmiljöer resulterar i kraftig absorption, vilket implicerar att signalstyrka samt strålningseffektivit blir utmanande men även centrala prestanda egenskaper för antennimplnatat. Det existerar fundamentala prestandabegränsningar för strålningseffektivitet, men dessa gränser är etablerade med hänsyn till teoretiskt ideala elementära dipoler. En semi-analytisk modell används för att utvärdera rimligheten av tidigare begränsningar samt den optimala dipolen, bägge med hänsyn till nödvändiga aspekter som ändlig konduktivitet och antennstorlek. Denna studie använder en sfärisk modell för att representera en simplifierad kroppslig miljö med olika vävnadskompositioner. Studien fokuserar på antennimplantat inom frekvensbandet dedikerat för Medical Implant Communication System (MICS) enheter, men modeller och metoder är typiskt inte begränsade inom omnämnt band. Arbetet bidrar till området för implanterbara antenner i flera aspekter; att utvärdera rimligheten av fundamentala gränser, fastställa mer realistiska prestandagränser samt bestämma den optimala dipolen med avseende på strålningseffektivitet. Andra resultat presenteras inom relaterade aspekter som metallförlust och utvärdering av en antenns last eller ingångs impedans inuti sfäriska och kroppsliga miljöer. Dessutom presenteras en metod för att mäta elektriskt små magnetiska dipoler. Metoder och modeller är dokumenterade eller demonstrerade via härledning, och centrala resultat har verifieras med oberoende metoder. Att förbise nödvändiga aspekter som ändlig storlek och konduktivitet kan leda till felaktiga slutsatser gällande prestanda. Däremot, att fastställa en mer realistisk gräns bidrar till att förutsäga prestandan i realistiska tillämpningar. I slutändan så resulterar ökad kunskap i en simplifierad designprocess som underlättar i strävan till att uppnå högpresterande antennimplantat.
|
Page generated in 0.2862 seconds