• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 8
  • 8
  • 8
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

High-thoughput Screen to Identify Small Molecule Inhibitors of the Canonical Wnt Signaling Pathway

Perusini, Stephen John 26 February 2009 (has links)
Wnt signaling is important in human development and disease, thus dysregulated beta-catenin constitutes an attractive target for drug intervention. The few functional inhibitors currently available target transcriptional activation, therefore, identifying novel upstream modulators would be of tremendous importance to elucidating the mechanisms involved in regulatingbeta-catenin activity. To achieve this, I developed a high-throughput screen to assess beta-catenin stability in mammalian cells using a luciferase tagged beta-catenin molecule. This assay was used to screen three chemical libraries to identify small molecule modulators of the pathway. Identified inhibitors/activators of the pathway were investigated via secondary assays. The most promising inhibitor, 21H7, significantly attenuated activated beta-catenin signaling in colon cancer cells, decreasing beta-catenin stability. The inhibitory effects of 21H7 and a structurally similar compound were shown to not only inhibit Wnt target gene expression in colon cancer cells, but also prostate cancer lines. Thus, 21H7 represents an attractive lead compound for further study.
2

High-thoughput Screen to Identify Small Molecule Inhibitors of the Canonical Wnt Signaling Pathway

Perusini, Stephen John 26 February 2009 (has links)
Wnt signaling is important in human development and disease, thus dysregulated beta-catenin constitutes an attractive target for drug intervention. The few functional inhibitors currently available target transcriptional activation, therefore, identifying novel upstream modulators would be of tremendous importance to elucidating the mechanisms involved in regulatingbeta-catenin activity. To achieve this, I developed a high-throughput screen to assess beta-catenin stability in mammalian cells using a luciferase tagged beta-catenin molecule. This assay was used to screen three chemical libraries to identify small molecule modulators of the pathway. Identified inhibitors/activators of the pathway were investigated via secondary assays. The most promising inhibitor, 21H7, significantly attenuated activated beta-catenin signaling in colon cancer cells, decreasing beta-catenin stability. The inhibitory effects of 21H7 and a structurally similar compound were shown to not only inhibit Wnt target gene expression in colon cancer cells, but also prostate cancer lines. Thus, 21H7 represents an attractive lead compound for further study.
3

Chemical and genetic control of melanocyte development, proliferation and regeneration in zebrafish

Marie, Kerrie Leanne January 2013 (has links)
Melanocytes are pigment-producing cells that colour our hair, skin and eyes. Melanocytes are evolutionary conserved in vertebrates, and in addition to contributing to pigmentation and pattern formation, can contribute to background adaptation (zebrafish) and protection against harmful UV irradiation (humans). Many of the processes involved in melanocyte development – such as migration, proliferation and differentiation - are misregulated in melanoma. Here, I use chemical biology in zebrafish to identify targetable pathways in melanocyte development and regeneration, with a view to how these processes may be misregulated in melanoma and other pigmentation syndromes. We first wanted to address the potential for small molecules to regulate multiple stages of melanocyte development and differentiation. In Chapter 3, I describe my work involved in a small molecule screen for clinically active compounds that alter melanocyte biology (Colanesi et al., 2012). In this work we have identified small-molecules that affect melanocyte migration, differentiation, survival, morphology and number. This is important as it highlights new pathways essential for normal melanocyte development and consequently provides further tools in which to study melanocytes. Identifying the target of small molecules in vivo is a challenge in chemical biology. In Chapter 4, I describe my contributions to understanding how 5-nitrofuran compounds act in zebrafish (Zhou et al., 2012). My work has contributed to understanding the activity of 5-nitrofurans is dependent upon its nitrofuran ring structure. I have also helped confirm a conserved interaction between 5-nitrofurans and ALDH2, which may contribute to the off-target effects observed in the clinic. These results are important as they aid further understand of the 5-nitrofuran class of drugs and give evidence to support combination therapy of 5-nitrofurans with ALDH2 inhibitors as a way to overcome clinical side effects. Additionally I show that NFN1 treatment limits ensuing melanocyte regeneration thereby suggesting a role at the Melanocyte Stem Cell (MSC), which provides me with a key tool to study melanocyte regeneration in zebrafish. How tissue specific cell numbers are specified and maintained is a key question in developmental biology. In Chapter 5, I describe the identification of the MITF gene in the maintenance of cell cycle arrest in differentiated melanocytes (Taylor et al., 2011). We show that the human melanoma mutation MITF4TΔ2B promotes melanocyte division, thereby suggesting a role for melanocyte division in the pathogenesis of melanoma. This work is valuable because it highlights Mitf as a molecular rheostat that controls melanocyte proliferation and differentiation in living vertebrates, and helps us to understand the role of MITF in melanoma progression. Little is known about the pathways that control melanocyte stem cells in animals. To identify new melanocyte stem cell pathways, I used NFN1 as the basis for a small molecule screen for enhancers of melanocyte regeneration (Chapter 6). I find that chemical inhibition of Phosphatase of Regenerating Liver-3 (Prl-3) in zebrafish can enhance melanocyte regeneration. Importantly, I have found that there are an increased number of melanocyte progenitor cells in PRL3-inhibitor treated zebrafish. I propose that PRL-3 may control progenitor cell number in melanocyte regeneration. This is significant because it identifies PRL-3 as a novel molecular target controlling melanocyte progenitor cells, and identifies a new chemical tool with which to study melanocyte differentiation from a progenitor population. In the final chapter, I discuss how this work relates to the larger field of melanocyte developmental biology, and the new insight it provides into the fundamental processes of how organisms control cell number and pattern formation. In addition, I discuss how this work may have implications for understanding and treating melanocyte diseases, such as vitiligo (loss of melanocytes) and melanoma (cancer of the melanocyte).
4

Chemical genetics in zebrafish : modulation of cAMP and MAPK pathways in behaviour

Lundegaard, Pia Rengtved January 2016 (has links)
The prevalence of stress and anxiety disorders in modern society is increasing, but the development of new treatments decreasing due to high research costs and low success rates in clinical trials. The latest type of compounds introduced to treat anxiety and depression was the specific serotonin reuptake inhibitors (SSRI), which was introduced in 1987. Since then, no new class of compounds have been introduced, suggesting that the need to find alternative targets in treating mental disorders is needed. In this thesis I have used the zebrafish as a model organism to study the modulation of behaviours through intracellular signalling pathways, known to be involved in learning, memory and anxiety. First, using the pro-convulsant compound, pentylenetetrazole (PTZ), an automated tracking system was established to quantify and analyse swimming behaviour in larvae zebrafish. Pentylenetetrazole induces seizures in zebrafish at high concentrations, however this thesis identifies that the combination of a low level of PTZ and subjecting the fish to alternating cycles of light and dark induced a reversed response to light and dark. A group of compounds with known anti-seizure effects were subsequently screened, which found that a combinational treatment with diazepam and two types of neurosteroids reversed the PTZ-induced light dark response. Secondly, using the same automated analysis setup, the effect of cAMP modulators was studied on behaviour in zebrafish larvae. Our lab has previously established that Rolipram, a PDE4 inhibitor, causes anxiety thigmotaxis in zebrafish larvae. In this thesis we treated zebrafish larvae with Rolipram and other compounds modulating cAMP, which greatly increased the swimming activity, which was reversed by subsequently treating with PD0325901. To test if the pharmacological modulation of cAMP-levels through the inhibition of other PDEs would lead to increased locomotor activity, a small library of PDE inhibitors was screened, and 4 compounds were identified that caused an increase in locomotion – three of these compounds were PDE4-inhibitors. Finally, by using two behavioural assays, I found that in adult fish Rolipram cause anxiety-like phenotypes, which is also reversible by MAPK-inhibition.
5

Cell-based phenotypic screens to identify modulators of sensitivity to N-methyl-N'-nitro-N-nitrosoguanidine

Pedley, Nicholas Michael January 2011 (has links)
Defective DNA repair capacity has been shown to be a common feature of cancer, and loss of function mutations in 'stability' genes that normally maintain the integrity of the genome may prove a key rate-limiting step in carcinogenesis. Since even genetically unstable cells require some repair functionality to maintain viability, these cancers likely exhibit an over-reliance on other DNA repair pathways for survival. Therapeutically targeting backup repair processes in such tumours represents a novel means by which to achieve selective tumour toxicity. Full exploitation of these synthetic lethal interactions will require an in-depth knowledge of the genetic basis of DNA repair in combination with an armoury of small molecule inhibitors of cellular targets. To this end, we have designed, optimised and run two high-throughput cell-based screens to identify genes and small molecules that can modulate mismatch repair (MMR) activity. Key to these screening strategies are the resistance of cells with dysfunctional MMR to a range of cytotoxic drugs, including the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). By exploiting this MMR-dependent toxicity we have assayed for siRNA and small molecules that permit the survival of MNNG-treated MMR-proficient cells to levels comparable to MMR-deficient cells, and which therefore represent putative MMR modulating agents. A screen of 571 siRNA for gene depletions that reduce MNNG sensitivity by at least two population standard deviations identified 10 genes of potential interest, and included the four canonical MMR genes, MSH2 (2.87 ± 0.28 (Z ± SE)), MSH6 (4.87 ± 0.06), MLH1 (3.42 ± 0.43) and PMS2 (3.36 ± 0.44). TDG represented an unexpected hit that decreased MNNG sensitivity by 2.55 ± 0.04 population standard deviations. However, clonogenic survival experiments found TDG depletion to be contextual synthetic lethal within an MMR-null background when treated with MNNG, reducing HCT116 clonogenicity by 37% (p < 0.001). Moreover, TDG knockdown increased the number of 53 binding protein 1 (53bp1) foci in MMR-proficient cells by 40% and MMR–deficient cells by 27% following MNNG exposure (p < 0.001). Combined with a failure to replicate the primary screen result, the role for TDG in the response to MNNG could be explained solely through its established role as a member of the base excision repair pathway. A second screen of the NCI Diversity I and II small molecule libraries (n=1786) was conducted to identify putative MMR inhibitors. Subsequent analysis revealed NSC197049 to increase cellular viability of MNNG treated cells by 3.60±0.32 population standard deviations and was successfully validated as a hit. Co-treatment of NSC197049 with MNNG conferred dose-dependent chemoprotection independently of MMR status and cell line, an effect that was lost if NSC197049 was pre- or post-treated. The protection was associated with a reduction in MNNG-dependent 53bp1 foci of 60% in MMR proficient cells and 15% in MMR deficient cells (p < 0.001), together with a marked reduction of > 80% in subG1 content at 48 hours post-MNNG that was independent of MMR status. Interestingly, the characteristic G2/M arrest of MNNG-treated MMR-proficient cells remained intact (~40% arrested). Taken together, these observations are not consistent with NSC197049 acting as an inhibitor of MMR. Dithiolthiones have been described as chemoprotective agents that induce antioxidant defences, whilst we have found NSC197049 phenocopies known antioxidants ascorbic acid and glutathione in protecting against MNNG-induced toxicity. NSC197049 may therefore act by bolstering cellular antioxidant defences. The precise mechanism may be novel, since the proto-typical dithiolthione, Oltipraz, failed to be protective in this study. In summary, we have confirmed that MMR is the primary determinant of MNNG sensitivity, and found that TDG is unlikely to be involved in MMR. We have also identified a novel chemoprotective small molecule that is unlikely to represent an MMR inhibitor, but that might be useful in cancer chemoprevention.
6

Identification and Validation of Small Molecules Inhibiting Human Adenovirus Replication

Saha, Bratati 01 October 2019 (has links)
Human adenovirus (HAdV) mainly causes minor illnesses, but can lead to severe disease and death in both immunocompromised and immunocompetent patients. In such cases, the current standards of treatment often do not improve disease outcome and no approved antiviral therapy against HAdV exists. Since HAdV relies on cellular machinery to assist in the progression of the virus lifecycle, we hypothesized that small molecules targeting certain cellular proteins/pathways, without severely affecting cell health, may serve as effective anti-HAdV compounds. Thus, we aimed to identify novel inhibitors of HAdV, and investigate the molecular mechanism to determine new therapeutic targets for intervention in HAdV infection. We first examined the antiviral properties of pan-histone deacetylase (HDAC) inhibitor SAHA and found that the drug affects multiple stages of the HAdV lifecycle, resulting in significant reductions in virus yield. SAHA was effective in decreasing gene expression from clinically relevant HAdV serotypes. Subsequent investigations on the role of HDACs in HAdV infection led us to determine that class I HDAC activity, mainly HDAC2, is necessary for optimal viral gene expression. Using a wildtype-like HAdV reporter construct that allows us to monitor virus replication by fluorescence microscopy, we then designed an efficient system for screening small molecules to identify novel HAdV inhibitors. We screened over 1300 small molecules, and the screen was sensitive enough to detect compounds with both robust and modest antiviral activity. Several positive hits were validated to reduce HAdV gene expression and yield from infected cells. Further investigation on the efficacy of these compounds and the mechanism behind their inhibition of HAdV can lead to the discovery of new pharmacological targets and the development of more effective antivirals.
7

Localization Study of Supervillin in Zebrafish Hair Cells Using Immuno-fluorescence Assay & Identification of Small Molecules that Impact the Innervation of the Lateral Line System of Developing Zebrafish

Gupta, Nilay 27 May 2016 (has links)
No description available.
8

The role of LKB1 (STK11) in non-small cell lung cancer

Cahill, Fiona January 2017 (has links)
LKB1 is the second most commonly altered tumour suppressor gene in lung adenocarcinoma, the most prevalent form of lung cancer. LKB1 is a "master kinase" that has been shown to phosphorylate up to 13 downstream targets. We hypothesised that LKB1 loss is associated with an increased dependency on alternative, targetable pathways. The overall aims of this project were to better understand the role of LKB1 loss in lung cancer and to identify novel approaches to selectively target LKB1 mutated cells. We generated isogenic cells with or without LKB1 and used these to study the effect of LKB1 on cell proliferation. Importantly, we used a range of models including 2D culture, 3D spheroids and, sub-cutaneous and orthotopic xenograft models. To understand the role of LKB1 loss in lung cancer, the effect of LKB1 on mRNA expression was analysed using whole genome RNA Sequencing. To identify novel approaches to selectively target LKB1 mutated cells, we used biological screening methods and also investigated the effect of several metabolic inhibitors. We found that loss of LKB1 expression had no effect on cell proliferation in 2D culture, but was associated with increased growth in 3D spheroids, sub-cutaneous and orthotopic xenografts, as well as greater metastasis in a lung orthotopic model. Gene ontology analysis of the transcriptome identified that genes associated with cAMP signalling and cytoskeletal organisation were differentially expressed between LKB1 deficient and proficient cells. We confirmed that cAMP signalling was increased in LKB1 deficient cells, though there was no difference in sensitivity between LKB1 deficient and proficient cells to cAMP signalling modulators. The bioactive small molecule screen showed that LKB1 deficient cells underwent apoptosis more slowly and therefore, were less sensitive to many compounds, compared with LKB1 proficient cells. Screening in 3D spheroids was a novel approach that we used to identify microtubule inhibitors as potentially selective compounds acting in LKB1 deficient cells. Our RNASeq data suggests that there was a metabolic shift from oxidative phosphorylation to aerobic glycolysis in LKB1 deficient cells, although this did not affect sensitivity to complex I inhibitors. Importantly, LKB1 deficient cells were more sensitive to glucose and glutamine deprivation which suggests that targeting these metabolic pathways may hold the greatest promise to selectively inhibit proliferation in LKB1 mutated cells.

Page generated in 0.067 seconds