• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Small zeros of quadratic congruences to a prime power modulus

Hakami, Ali Hafiz Mawdah January 1900 (has links)
Doctor of Philosophy / Department of Mathematics / Todd E. Cochrane / Let $m$ be a positive integer, $p$ be an odd prime, and $\mathbb{Z}_{p^m } = \mathbb{Z}/(p^m )$ be the ring of integers modulo $p^m $. Let $$Q({\mathbf{x}}) = Q(x_1 ,x_2 ,...,x_n ) = \sum\limits_{1 \leqslant i \leqslant j \leqslant n} {a_{ij} x_i x_j } ,$$ be a quadratic form with integer coefficients. Suppose that $n$ is even and $\det A_Q \not \equiv 0\;(\bmod p)$. Set $\Delta = (( - 1)^{n/2} \det A_Q /p)$, where $( \cdot /p)$ is the Legendre symbol and $\left\| {\mathbf{x}} \right\| = \max \left| {x_i } \right|$. Let $V$ be the set of solutions the congruence $ $Q({\mathbf{x}})\, \equiv \;0\quad (\bmod p^m ) \quad(1)$$, contained in $\mathbb{Z}^n $ and let $B$ be any box of points in $\mathbb{Z}^n $of the type $$B = \left\{ {{\mathbf{x}} \in \mathbb{Z}^n \left| {\,a_i \leqslant x_i < a_i + m_i ,\;\,1 \leqslant i \leqslant n} \right.} \right\},$$ where $a_i ,m_i \in \mathbb{Z},\;1 \leqslant m_i \leqslant p^m $. In this dissertation we use the method of exponential sums to investigate how large the cardinality of the box $B$ must be in order to guarantee that there exists a solution ${\mathbf{x}}$of (1) in $ B$. In particular we will focus on cubes (all $m_i $equal) centered at the origin in order to obtain primitive solutions with $\left\| {\mathbf{x}} \right\|$ small. For $m = 2$ and $n \geqslant 4$ we obtain a primitive solution with $\left\| {\mathbf{x}} \right\| \leqslant \max \left\{ {2^5 p,2^{18} } \right\}$. For $m = 3$, $n \geqslant 6$, and $\Delta = + 1$, we get $\left\| {\mathbf{x}} \right\| \leqslant \max \left\{ {2^{2/n} p^{(3/2) + (3/n)} ,2^{(2n + 4)/(n - 2)} } \right\}$. Finally for any $m \geqslant 2$, $n \geqslant m,$ and any nonsingular quadratic form we obtain $\left\| {\mathbf{x}} \right\| \leqslant \max \{ 6^{1/n} p^{m[(1/2) + (1/n)]} ,2^{2(n + 1)/(n - 2)} 3^{2/(n - 2)} \} $. Others results are obtained for boxes $B$ with sides of arbitrary lengths.

Page generated in 0.1042 seconds