• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effect of prefabricated vertical drains on pore water pressure generation and dissipation in liquefiable sand

Marinucci, Antonio 21 September 2010 (has links)
Soil improvement methods are used to minimize the consequences of liquefaction by changing the characteristics and/or response of a liquefiable soil deposit. When considering sites with previous development, the options for soil improvement are limited. Traditional methods, such as compaction and vibratory techniques, are difficult to employ because of adverse effects on adjacent structures. One potential method for soil improvement against soil liquefaction in developed sites is accelerated drainage through in situ vertical drains. Vertical drains expedite the dissipation of excess pore water pressures by reducing the length of the pore water drainage path. For more than thirty years, vertical gravel drains or stone columns have been employed to ensure the excess pore water pressure ratio remains below a prescribed maximum value. In recent years, the use of prefabricated vertical drains (PVDs) has increased because the drains can be installed with less site disruption than with traditional soil improvement methods. To date, little-to-no field or experimental verification is available regarding the seismic performance of sites treated with PVDs. The effectiveness of PVDs for liquefaction remediation was evaluated via small-scale centrifuge testing and full-scale field testing. A small-scale centrifuge test was performed on an untreated soil deposit and on a soil deposit treated with small-scale vertical drains. Compared to the untreated condition, the presence of the small-scale vertical drains provided numerous benefits including smaller magnitudes of excess pore water pressure generation and buildup, smaller induced cyclic shear strains, reduced times for pore pressure dissipation, and smaller permanent horizontal and vertical displacements. In addition, full-scale in situ field experiments were performed in an untreated soil deposit and in a soil deposit treated with full-scale PVDs using a vibrating mandrel as the dynamic source. In the untreated test area, the maximum induced excess pore pressure ratio reached about 0.95. In the treated test area, the vibratory installation of the first few drains generated significant excess pore pressures; however, significant excess pore pressures were not generated during the vibratory installation of additional drains because of the presence of the adjacent drains. Additionally, the vibratory installation of the drains caused significant settlement and significantly altered the shear wave velocity of the sand. Dynamic shaking after installation of all of the drains induced small accelerations, small cyclic shear strains, and negligible excess pore water pressures in the soil. The results of the field experiment indicate that the prefabricated vertical drains were effective at dissipating excess pore water pressures during shaking and densifying the site. / text

Page generated in 0.1126 seconds