Spelling suggestions: "subject:"smart electrical vehicle charging"" "subject:"kmart electrical vehicle charging""
1 |
Stochastic Optimization and Real-Time Scheduling in Cyber-Physical SystemsJanuary 2012 (has links)
abstract: A principal goal of this dissertation is to study stochastic optimization and real-time scheduling in cyber-physical systems (CPSs) ranging from real-time wireless systems to energy systems to distributed control systems. Under this common theme, this dissertation can be broadly organized into three parts based on the system environments. The first part investigates stochastic optimization in real-time wireless systems, with the focus on the deadline-aware scheduling for real-time traffic. The optimal solution to such scheduling problems requires to explicitly taking into account the coupling in the deadline-aware transmissions and stochastic characteristics of the traffic, which involves a dynamic program that is traditionally known to be intractable or computationally expensive to implement. First, real-time scheduling with adaptive network coding over memoryless channels is studied, and a polynomial-time complexity algorithm is developed to characterize the optimal real-time scheduling. Then, real-time scheduling over Markovian channels is investigated, where channel conditions are time-varying and online channel learning is necessary, and the optimal scheduling policies in different traffic regimes are studied. The second part focuses on the stochastic optimization and real-time scheduling involved in energy systems. First, risk-aware scheduling and dispatch for plug-in electric vehicles (EVs) are studied, aiming to jointly optimize the EV charging cost and the risk of the load mismatch between the forecasted and the actual EV loads, due to the random driving activities of EVs. Then, the integration of wind generation at high penetration levels into bulk power grids is considered. Joint optimization of economic dispatch and interruptible load management is investigated using short-term wind farm generation forecast. The third part studies stochastic optimization in distributed control systems under different network environments. First, distributed spectrum access in cognitive radio networks is investigated by using pricing approach, where primary users (PUs) sell the temporarily unused spectrum and secondary users compete via random access for such spectrum opportunities. The optimal pricing strategy for PUs and the corresponding distributed implementation of spectrum access control are developed to maximize the PU's revenue. Then, a systematic study of the nonconvex utility-based power control problem is presented under the physical interference model in ad-hoc networks. Distributed power control schemes are devised to maximize the system utility, by leveraging the extended duality theory and simulated annealing. / Dissertation/Thesis / Ph.D. Electrical Engineering 2012
|
2 |
Smart Grid security : protecting users' privacy in smart grid applicationsMustafa, Mustafa Asan January 2015 (has links)
Smart Grid (SG) is an electrical grid enhanced with information and communication technology capabilities, so it can support two-way electricity and communication flows among various entities in the grid. The aim of SG is to make the electricity industry operate more efficiently and to provide electricity in a more secure, reliable and sustainable manner. Automated Meter Reading (AMR) and Smart Electric Vehicle (SEV) charging are two SG applications tipped to play a major role in achieving this aim. The AMR application allows different SG entities to collect users’ fine-grained metering data measured by users’ Smart Meters (SMs). The SEV charging application allows EVs’ charging parameters to be changed depending on the grid’s state in return for incentives for the EV owners. However, both applications impose risks on users’ privacy. Entities having access to users’ fine-grained metering data may use such data to infer individual users’ personal habits. In addition, users’ private information such as users’/EVs’ identities and charging locations could be exposed when EVs are charged. Entities may use such information to learn users’ whereabouts, thus breach their privacy. This thesis proposes secure and user privacy-preserving protocols to support AMR and SEV charging in an efficient, scalable and cost-effective manner. First, it investigates both applications. For AMR, (1) it specifies an extensive set of functional requirements taking into account the way liberalised electricity markets work and the interests of all SG entities, (2) it performs a comprehensive threat analysis, based on which, (3) it specifies security and privacy requirements, and (4) it proposes to divide users’ data into two types: operational data (used for grid management) and accountable data (used for billing). For SEV charging, (1) it specifies two modes of charging: price-driven mode and price-control-driven mode, and (2) it analyses two use-cases: price-driven roaming SEV charging at home location and price-control-driven roaming SEV charging at home location, by performing threat analysis and specifying sets of functional, security and privacy requirements for each of the two cases. Second, it proposes a novel Decentralized, Efficient, Privacy-preserving and Selective Aggregation (DEP2SA) protocol to allow SG entities to collect users’ fine-grained operational metering data while preserving users’ privacy. DEP2SA uses the homomorphic Paillier cryptosystem to ensure the confidentiality of the metering data during their transit and data aggregation process. To preserve users’ privacy with minimum performance penalty, users’ metering data are classified and aggregated accordingly by their respective local gateways based on the users’ locations and their contracted suppliers. In this way, authorised SG entities can only receive the aggregated data of users they have contracts with. DEP2SA has been analysed in terms of security, computational and communication overheads, and the results show that it is more secure, efficient and scalable as compared with related work. Third, it proposes a novel suite of five protocols to allow (1) suppliers to collect users accountable metering data, and (2) users (i) to access, manage and control their own metering data and (ii) to switch between electricity tariffs and suppliers, in an efficient and scalable manner. The main ideas are: (i) each SM to have a register, named accounting register, dedicated only for storing the user’s accountable data, (ii) this register is updated by design at a low frequency, (iii) the user’s supplier has unlimited access to this register, and (iv) the user cancustomise how often this register is updated with new data. The suite has been analysed in terms of security, computational and communication overheads. Fourth, it proposes a novel protocol, known as Roaming Electric Vehicle Charging and Billing, an Anonymous Multi-User (REVCBAMU) protocol, to support the priced-driven roaming SEV charging at home location. During a charging session, a roaming EV user uses a pseudonym of the EV (known only to the user’s contracted supplier) which is anonymously signed by the user’s private key. This protocol protects the user’s identity privacy from other suppliers as well as the user’s privacy of location from its own supplier. Further, it allows the user’s contracted supplier to authenticate the EV and the user. Using two-factor authentication approach a multi-user EV charging is supported and different legitimate EV users (e.g., family members) can be held accountable for their charging sessions. With each charging session, the EV uses a different pseudonym which prevents adversaries from linking the different charging sessions of the same EV. On an application level, REVCBAMU supports fair user billing, i.e., each user pays only for his/her own energy consumption, and an open EV marketplace in which EV users can safely choose among different remote host suppliers. The protocol has been analysed in terms of security and computational overheads.
|
Page generated in 0.1057 seconds