• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelagem numérica de estruturas de concreto armado utilizando o programa ATENA. / Numerical modelling of reinforcement concrete structures using the program ATENA.

Lyra, Pedro Henrique Cerento de 16 December 2011 (has links)
Com o avanço tecnológico dos computadores e o desenvolvimento de soluções para problemas não lineares através do método dos elementos finitos, hoje é possível fazer uma análise mais complexa e mais próxima da realidade. É de extrema importância à verificação dos resultados obtidos pelos programas com a realidade e saber em quais casos esses modelos podem ser aplicados. Assim, o objetivo deste trabalho é discutir as vantagens e desvantagens da modelagem de estruturas de concreto armado em duas e três dimensões, através dos modelos de fissuras distribuídas. Foram escolhidos três experimentos para a modelagem numérica: o primeiro trata-se de um experimento com uma viga de concreto armado (LEONHARDT; WALTHER, 1962), o segundo experimento também é realizado com uma viga de concreto armado (BRESLER; SCORDELIS, 1963) e o terceiro experimento utiliza vigas de concreto armado em escala reduzida, fabricadas com microconcreto e arame, simulando uma barra de aço lisa (ALMEIDA et al, 2006). Para a modelagem numérica, utilizando-se o modelo de fissuras distribuídas com fissura rotacional e a análise das estruturas de concreto foi escolhido o programa comercial ATENA - \"Advanced Tool Engineering Non-linear Analysis\". / The technological advancement of computers and the development of solutions for nonlinear problems by finite element method are now possible to make more complex the analysis and closer to reality. It is extremely important to verify the results obtained by programs with reality and know which cases these models can be applied. So the objective is to discuss the advantages and disadvantages of modeling reinforced concrete structures in two and three dimensions, through the smeared cracking models. Three experiments were chosen to make the numerical modeling: the first is an experiment with a reinforced concrete beam (LEONHARDT; WALTHER, 1962), the second experiment is also a reinforced concrete beam (BRESLER; SCORDELIS, 1963) and the third experiment is reinforced concrete beams with small-scale and made of wire microconcrete simulating flat steel bar (ALMEIDA et al, 2006). For numerical modeling, using the smeared crack model with rotational crack, and analysis of concrete structures was chosen the commercial program ATENA - Advanced Tool Engineering Non-linear Analysis.
2

Modelagem numérica de estruturas de concreto armado utilizando o programa ATENA. / Numerical modelling of reinforcement concrete structures using the program ATENA.

Pedro Henrique Cerento de Lyra 16 December 2011 (has links)
Com o avanço tecnológico dos computadores e o desenvolvimento de soluções para problemas não lineares através do método dos elementos finitos, hoje é possível fazer uma análise mais complexa e mais próxima da realidade. É de extrema importância à verificação dos resultados obtidos pelos programas com a realidade e saber em quais casos esses modelos podem ser aplicados. Assim, o objetivo deste trabalho é discutir as vantagens e desvantagens da modelagem de estruturas de concreto armado em duas e três dimensões, através dos modelos de fissuras distribuídas. Foram escolhidos três experimentos para a modelagem numérica: o primeiro trata-se de um experimento com uma viga de concreto armado (LEONHARDT; WALTHER, 1962), o segundo experimento também é realizado com uma viga de concreto armado (BRESLER; SCORDELIS, 1963) e o terceiro experimento utiliza vigas de concreto armado em escala reduzida, fabricadas com microconcreto e arame, simulando uma barra de aço lisa (ALMEIDA et al, 2006). Para a modelagem numérica, utilizando-se o modelo de fissuras distribuídas com fissura rotacional e a análise das estruturas de concreto foi escolhido o programa comercial ATENA - \"Advanced Tool Engineering Non-linear Analysis\". / The technological advancement of computers and the development of solutions for nonlinear problems by finite element method are now possible to make more complex the analysis and closer to reality. It is extremely important to verify the results obtained by programs with reality and know which cases these models can be applied. So the objective is to discuss the advantages and disadvantages of modeling reinforced concrete structures in two and three dimensions, through the smeared cracking models. Three experiments were chosen to make the numerical modeling: the first is an experiment with a reinforced concrete beam (LEONHARDT; WALTHER, 1962), the second experiment is also a reinforced concrete beam (BRESLER; SCORDELIS, 1963) and the third experiment is reinforced concrete beams with small-scale and made of wire microconcrete simulating flat steel bar (ALMEIDA et al, 2006). For numerical modeling, using the smeared crack model with rotational crack, and analysis of concrete structures was chosen the commercial program ATENA - Advanced Tool Engineering Non-linear Analysis.
3

Modélisation du comportement des bétons fibrés à ultra-hautes performances par la micromécanique : effet de l'orientation des fibres à l'échelle de la structure / Micromechanics-based modelling of the UHPFRC behaviour : fibres orientation effects at the structural scale

Guenet, Thomas 31 March 2016 (has links)
Cette thèse s’inscrit dans le contexte d’une optimisation industrielle et économique des éléments de structure en BFUP permettant d’en garantir la ductilité au niveau structural, tout en ajustant la quantité de fibres et en optimisant le mode de fabrication. Le modèle développé décrit explicitement la participation du renfort fibré en traction au niveau local, en enchaînant une phase de comportement écrouissante suivie d'une phase adoucissante. La loi de comportement est fonction de la densité, de l'orientation des fibres vis-à-vis des directions principales de traction, de leur élancement et d'autres paramètres matériaux usuels liés aux fibres, à la matrice cimentaire et à leur interaction. L'orientation des fibres est prise en compte à partir d'une loi de probabilité normale à une ou deux variables permettant de reproduire n'importe quelle orientation obtenue à partir d’un calcul représentatif de la mise en œuvre du BFUP frais ou renseignée par analyse expérimentale sur prototype. Enfin, le modèle reproduit la fissuration des BFUP sur le principe des modèles de fissures diffuses et tournantes. La loi de comportement est intégrée au sein d'un logiciel de calcul de structure par éléments finis, permettant de l'utiliser comme un outil prédictif de la fiabilité et de la ductilité globale d’éléments en BFUP. Deux campagnes expérimentales ont été effectuées, une à l'Université Laval de Québec et l'autre à l'Ifsttar, Marne-la-Vallée. La première permet de valider la capacité du modèle à reproduire le comportement global sous des sollicitations typiques de traction et de flexion dans des éléments structurels simples pour lesquels l’orientation préférentielle des fibres a été renseignée par tomographie. La seconde campagne expérimentale démontre les capacités du modèle dans une démarche d’optimisation, pour la fabrication de plaques nervurées relativement complexes et présentant un intérêt industriel potentiel pour lesquels différentes modalités de fabrication et des BFUP plus ou moins fibrés ont été envisagés. Le contrôle de la répartition et de l’orientation des fibres a été réalisé à partir d'essais mécaniques sur prélèvements. Les prévisions du modèle ont été confrontées au comportement structurel global et à la ductilité mis en évidence expérimentalement. Le modèle a ainsi pu être qualifié vis-à-vis des méthodes analytiques usuelles de l'ingénierie, en prenant en compte la variabilité statistique. Des pistes d'amélioration et de complément de développement ont été identifiées / This Ph.D. project has been prepared within the context of an industrial and economic optimisation of UHPFRC structural elements to ensure ductility at the structural level, while adjusting the amount of fibre and optimising the manufacturing process. The model developed explicitly describes the participation of local fibre reinforcement in tension, thanks to a hardening behaviour followed by a softening one. The constitutive law is a function of the local fibre content, of the fibre orientation with respect to tensile principal directions, of the fibre slenderness and other usual material parameters related to the fibres, the cementitious matrix and their interaction. The fibre orientation is taken into account using a normal probability distribution with one or two variables to reproduce any orientation either obtained from a representative simulation of casting fresh UHPFRC or informed by experimental analysis on prototypes. Lastly, the model reproduces the cracking of UHPFRC based on the principle of smeared rotating crack models. The constitutive law is implemented in a structural finite element software as a predictive tool of reliability and overall ductility of UHPFRC elements. Two experimental campaigns were carried out, one at Laval University in Quebec and one at Ifsttar, Marne-la-Vallée. The first one is used to confirm the model ability to reproduce the overall behaviour under typical tensile and bending loads in simple structural elements for which the preferential fibre orientation was measured by microtomography. The second experimental campaign demonstrates the capabilities of the model, in an optimisation process, to help manufacture relatively complex ribbed triangular plates of industrial interest in which different manufacturing process and fibre volume have been considered. The identification of fibre distribution and orientation has been performed using mechanical tests on sawn samples. The model predictions have been compared to the global structural behaviour, and to the ductility demonstrated experimentally. The model could be qualified through comparison with conventional analytical engineering methods, taking into account the statistical variability. Improvement and additional developments have been identified
4

Nonlinear finite element analysis of reinforced concrete exterior beam-column joints with nonseismic detailing

Deaton, James B. 11 January 2013 (has links)
This research investigated the behavior of nonseismically detailed reinforced concrete exterior beam-column joints subjected to bidirectional lateral cyclic loading using nonlinear finite element analysis (NLFEA). Beam-column joints constitute a critical component in the load path of reinforced concrete buildings due to their fundamental role in integrating the overall structural system. Earthquake reconnaissance reports reveal that failure of joints has contributed to partial or complete collapse of reinforced concrete buildings designed without consideration for large lateral loads, resulting in significant economic impact and loss of life. Such infrastructure exists throughout seismically active regions worldwide, and the large-scale risk associated with such deficiencies is not fully known. Computational strategies provide a useful complement to the existing experimental literature on joint behavior and are needed to more fully characterize the failure processes in seismically deficient beam-column joints subjected to realistic failure conditions. Prior to this study, vulnerable reinforced concrete corner beam-column joints including the slab had not been analyzed using nonlinear finite element analysis and compared with experimental results. The first part of this research focused on identification and validation of a constitutive modeling strategy capable of simulating the behaviors known to dominate failure of beam-column joints under cyclic lateral load using NLFEA. This prototype model was formulated by combining a rotating smeared crack concrete constitutive model with a reinforcing bar plasticity model and nonlinear bond-slip formulation. This model was systematically validated against experimental data, and parametric studies were conducted to determine the sensitivity of the response to various material properties. The prototype model was then used to simulate the cyclic response of four seismically deficient beam-column joints which had been previously evaluated experimentally. The simulated joints included: a one-way exterior joint, a two-way beam-column exterior corner joint, and a series of two-way beam-column-slab exterior corner joints with varying degrees of seismic vulnerability. The two-way corner joint specimens were evaluated under simultaneous cyclic bidirectional lateral and cyclic column axial loading. For each specimen, the ability of the prototype model to capture the strength, stiffness degradation, energy dissipation, joint shear strength, and progressive failure mechanisms (e.g. cracking) was demonstrated.

Page generated in 0.061 seconds