Spelling suggestions: "subject:"smithsonite"" "subject:"smithsonita""
1 |
Mineralogy and geochemistry of the non-sulfide Zn deposits in the Sierra Mojada district, Coahuila, MexicoAhn, Hye In 23 December 2010 (has links)
The Sierra Mojada district consists of multiple types of mineral concentrations ranging from polymetallic sulfide deposits, "non-sulfide Zn" (NSZ) deposits, and a Pb carbonate deposit hosted by Upper Jurassic to Lower Cretaceous carbonates. This study focuses on the two non-sulfide Zn deposits, the Smithsonite Manto and the Iron Oxide Manto, that occur south of the San Marcos fault. The Smithsonite Manto shows karst features, including internal sediments interbanded with smithsonite (ZnCO₃). The Iron Oxide Manto consists of strata-bound zones dominantly of hemimorphite (Zn₄Si₂O₇ (OH)₂·H₂O) that fills pores in Fe-oxides. The mineralogy of the NSZ mineralization consists of smithsonite, hemimorphite and Zn clays (sauconite) associated mainly with calcite and Mn-Fe-oxides. Zn clays are abundant in the Smithsonite Manto, but no Zn clays have been found in the Iron Oxide Manto. This project attempts to constrain the origin of the NSZ concentrations through petrographic and mineralogical study of major Zn-bearing minerals, and their carbon and oxygen stable isotopes and Pb isotope geochemistry. Smithsonite in the Smithsonite Manto occurs as botryoidal aggregates consisting of scalenohedral or rhombohedral microcrystals and banded colloform or massive smithsonite in open spaces, whereas smithsonite in the Iron Oxide Manto occurs as rhombic microcrystals grown in pore spaces or finely intergrown with Fe-oxides. Both Fe-poor and Fe-rich smithsonite are found in the Iron Oxide Manto. Under optical-CL, smithsonite displays complex growth zoning that can be related to variable trace element content. Trace elements semiquantitatively analyzed using LA-ICP-MS show that most blue luminescent smithsonite has lower Mn contents than pink to bright red luminescent zones in smithsonite. Preliminary fluid inclusion petrography in hemimorphite and calcite suggests that fluid composition can be related to precipitation of NSZ minerals from freshwater to slightly saline waters. Calculated salinities for two phase (liquid +vapor) and single phase (liquid) inclusions in hemimorphite range between 0.0 and 1.6 wt. % NaCl equivalent, and salinities of inclusions in calcite were between 0.0 and 1.1 wt. % NaCl equivalent. The oxygen isotope values for smithsonite are relatively constant (avg. [delta]¹⁸O[subscriptVSMOW] = 21.9 ± 0.5[per mille]), whereas [delta]¹³C[subscriptVPDB] values range from -8.4 to -1.1 [per mille]. The oxygen isotope values in late calcite are within the same range of smithsonite, whereas the average values of the carbon isotope are lower by 5 [per mille]. Formational temperature of smithsonite is calculated to be between 26 ~ 40 °C using the modern groundwater composition at Cuatro Ciénegas. Similar Pb isotopic compositions of smithsonite and cerussite to galena suggest the source of metals in the NSZ deposits presumably originate from the sulfide deposits. / text
|
2 |
Exploration de matériaux avancés pour des applications en génie civil / Exploration of advanced materials for civil engineering applicationsBouibes, Amine 24 November 2014 (has links)
Le progrès dans le domaine du génie civil n’aurait pas été possible sans le développement de nouveaux matériaux. En fait, les nouveaux matériaux avec des propriétés performantes ont permis la construction de structures modernes, de plus grands bâtiments, de plus grands ponts…etc. En outre, il est important de continuer le progrès et le développement des matériaux dans le futur. En particulier, dans l'approche des constructions intelligentes, nous aurons besoin de nouveaux matériaux aux propriétés très performantes. L'étude des propriétés des matériaux, à l'échelle moléculaire, permet une meilleure compréhension de la façon dont ces matériaux fonctionnent et réagissent à un niveau macro. C’est grâce à de tells études que nous sommes en mesure de comprendre leurs comportements sous des conditions variables. Dans cette thèse, nous focalisons nos efforts sur trois types de matériaux. Le premier est le carbonate de zinc. Le second est la chaux, qui est largement utilisée dans le domaine de la construction et les travaux publics; et le dernier est l'oxyde de zinc, qui est un matériau important pour les constructions en acier. Notre but est d'étudier en détail ces trois différents matériaux à diverses pressions et à compositions variables par la méthode de prédiction de structures basée sur l’approche ab initio. Pour la smithsonite, un bon nombre de propriétés mécaniques a été évalué. Nous montrons notamment que ce système est plus dur et plus rigide que les autres carbonates. En outre, l'étude de ses propriétés électroniques révèle que l'énergie de la bande interdite est assez proche de certains semi-conducteurs. Par ailleurs, deux transitions de phase à haute pression ont été trouvées: la première à 87 GPa et la seconde à 121 GPa. En dessous de 87 GPa, ZnCO3 est stable sous la structure de groupe d’espace R-3c (structure de calcite); et entre 78 GPa et 121 GPa, ZnCO3 se stabilise sous une autre structure dont le groupe d'espace est C2/m (structure de magnésite phase II). Au-delà de 121 GPa, nous montrons que la nouvelle structure de groupe d'espace P212121 devient la plus stable. Par ailleurs, en utilisant la méthode de prédiction de structure –composition variable- basée sur l’approche ab initio, nous montrons que le système Ca-O pourraient se stabiliser sous de nouvelles compositions chimiques autres que le CaO. À pression ambiante, CaO2 est prédit comme étant un système thermodynamiquement stable. Ce nouveau composé passe de la structure de groupe d’espace C2/c à celle de groupe d’espace I4/mcm à 18.5GPa. En augmentant la pression, d'autres composés deviennent plus stables tels que CaO3 qui se stabilise dans la structure de groupe d'espace P-421m à partir de 65 GPa. Enfin, nos études sur ZnO montrent que ZnO2 devient thermodynamiquement stable à une pression supérieure à 120 GPa. Une transition de phase est obtenue à 10 GPa pour ZnO, qui est stable dans la structure wurtzite B4 dans des conditions ambiantes et jusqu'à 10GPa. Au-delà de 10 GPa, ZnO devient plus stable dans une structure de type B1. Ces résultats confortent nos prédictions puisqu’ils s’accordent parfaitement avec les travaux expérimentaux et théoriques précédents. / The civil engineering progress would not been possible without new materials development. In fact, new materials with efficient properties allowed the construction of modern structures, taller building, longer bridges,…etc. Furthermore, it is essential for the progress continuity of this field in the future. Especially, in the smart construction approach we will need new materials with the very efficient properties. The study of the properties of materials at the molecular level, allow a better understanding of how those materials will function and react on a macro level. It is through such studies that we are able to understand their behaviors under a large number of conditions. In this thesis, we focus our efforts on three types of materials. The first one is zinc carbonate. The second one is Lime, which is widely used in building and public works ; and the last one is zinc oxide, which is an important material for steel construction. The purpose here is to investigate in details the three different materials at various pressures and variable compositions by means of the universal structure prediction method based on ab initio tool. For smithsonite, a number of mechanical properties were evaluated. We mainly show that this system is harder and more rigid than the other carbonates. Besides, the investigation of its electronic properties reveals that the energy band-gap is close enough to some semiconductors. Moreover, two high-pressure phase transitions have been found: the first one at 87 GPa and second one at 121 GPa. Below 87 GPa, ZnCO3 is found to be the most stable structure with R-3c space group (calcite structure); and between 78 GPa and 121 GPa, ZnCO3 has another structure (magnesite phase II) with C2/m space group. Above 121 GPa, we show that new structure with P212121 space group becomes more stable. In addition, by means of variable composition ab initio evolutionary algorithm, we show surprisingly new stable compounds from Ca-O. At ambient pressure CaO2 is predicted as a thermodynamically stable system. This new compound goes from C2/c to I4/mcm space group structure at 18.5GPa. Under increasing pressure, further compounds become stable such as CaO3 which stabilize in P-421m space group structure above 65 GPa. Finally, our studies on ZnO show that ZnO2 becomes thermodynamically stable at pressure above 120 GPa. A phase transition is obtained at 10 GPa for ZnO, which is stable in B4 wurtzite structure at ambient conditions up to 10GPa. Above 10 GPa, ZnO becomes more stable in B1 structure. These results strongly support our predictions since they agree perfectly with available experiment and previous theoretical studies.
|
Page generated in 0.0243 seconds