• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Novel sensors for the detection of biologically important species

Li, Meng January 2015 (has links)
The ability to monitor the presence of analytes is of great importance both in industrial applications and physiological systems. Since the crucial recognition events of chemistry, biology, and materials science occur in a much smaller world, it is very difficult to gather this kind of information. Therefore much effort has been devoted to the detection of chosen molecules selectively and signalling this presence. This thesis highlighted the uniqueness and utility of both fluorescent sensor and electrochemical sensor to investigate biologically important species. The determination of copper(II) ion is very crucial to both environment and human health. To utilise the fluorescent sensors for recognition has plenty of advantages, such as high sensitivity, “on-off” switch ability and submillisecond temporal resolution. Naphthalimide based probes has always been the key point of the chemosensors due to its excellent photophysical properties. Therefore, the aim of the project is to investigate boronic acid receptor linked to the naphthalimide fluorophore for copper(II) detection. And the utility of boronic acid as binding site is one of the rare examples of fluorescent chemosensors for Cu2+ detection. Neutral molecules such as glutathione (GSH) play a crucial role in maintaining appropriate redox homeostasis in biological systems. We creatively use the chromophore of dicyanomethylene-4H-pyran(DCM) for the design of probe, due to its emission located at the red or near infra-red (NIR) region, which is particularly suitable for application in biological samples. GSH, the most abundant cellular thiol, is of great importance in cellular defence against toxins and free radicals. Therefore we developed a colorimetric and NIR fluorescence turn-on thiol probe containing DCM as the fluorophore and DNBS as the fluorescence quencher and recognition moiety. The interaction of ferrocene-boronic acid with fructose is investigated in aqueous 0.1 M phosphate buffer at pH 7, 8, and 9. Two voltammetric methods, (i) based on a dual-plate generator-collector micro-trench electrode (steady state) and (ii) based on square-wave voltammetry (transient), are applied and compared in terms of mechanistic resolution. A combination of experimental data is employed to obtain new insights into the binding rates and the cumulative binding constants for both the reduced ferrocene-boronic acid (pH dependent and weakly binding) and for the oxidised ferrocene-boronic acid (pH independent and strongly binding). Finally, a redox-activated fluorescence switch based on a ferrocene - fluorophore - boronic ester conjugate was investigated. The development of multifunctional systems that can integrate individual basic logic gates into combinational circuits has drawn much attention to smart materials. A novel electrochemically and fluorescence active boronic ester sensor molecule has been developed containing ferrocence and naphthalimide as the redox and fluorophore units. The solid state electrochemical characterisation of the compound was investigated in aqueous media and it indicates a direct interaction with fluoride anions. The fluorescence can also be modulated through photoinduced electron transfer (PET) by a redox process. An OFF-ON fluorescence response occurs when the ferrocene is oxidised by Fe3+. While in the presence of F-, the fluorescence enhancement was offset. Therefore, the combinations of iron (Fe3+ ) ions, sodium L-ascorbate, and fluoride (F-) ions can be used to produce a molecular system displaying INHIBIT logic gate, due to indirect fluorescence quenching.
2

A Situational Awareness Enhancing System for Minimally Invasive Surgery Training

Feng, Chuan January 2007 (has links)
Minimally Invasive Surgery (MIS) is a surgical technique involving small incisions performed by an endoscope and several long, thin instruments. Because of its minimally invasive nature, MIS minimizes complications and speeds up recovery time compared to the traditional surgery. Unfortunately, from a surgeon's perspective, MIS is much more challenging than conventional surgery. Because the limited vision and sensing feedbacks, MIS a difficult skill for medical students and residents to master.There has been some research on the effectiveness of different kinds of training and guidance. Surgical simulation is increasingly perceived as a valuable addition to traditional medical training methods, although most existing simulators have limitations stemming from either a lack of objective performance assessment or an insufficient relation to the operating room reality.The objective of this research is to design and realize a novel prototype that advances the state of the art in surgical training, assessment, and guidance for MIS. The prototype features micro-sensors embedded into the instruments employed for simulation training. The system provides multiple training scenarios, a high fidelity training environment, repeatable, structured exercises, and objective performance assessment capabilities.The proposed Situational Awareness Enhancing System (SAES) uses a unified framework incorporating perception, comprehension, and projection software modules that provide feedback during the exercises and enable evaluation of the training procedure.A multiple sensor data fusion method was developed to help surgeons efficiently acquire information in real time. The output, "Hybridview", is produced by fusing the information from digital camera and magnetic position sensors, and shows an overlay of the positions of organs and objects with the trajectory of instruments. An intelligent inference engine was designed to formulate an objective standard based on the expertise of senior surgeons and to provide an accurate scoring method. A multi-level fuzzy inference engine and new performance metrics were implemented.To demonstrate the feasibility of the proposed training system, numerous experiments were conducted. The results show that the situational awareness training system for MIS is useful and efficient.

Page generated in 0.0442 seconds