• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Snowfall event analysis at a remote northern alpine icefield

Courtin, Eric 31 May 2018 (has links)
Data are presented from an automatic weather station on the Brintnell-Bologna Icefield that operated from August 2014 to August 2016 in Nahanni National Park Reserve. This location is notable for being the northernmost mass balance alpine study location of the federal government’s glaciology program (NRCan/GSC). The link between atmospheric forcing at the synoptic scale and response at the glacier surface has been shown to be strongly dependent on continentality and latitude. In this region, however, many aspects of the physical processes controlling the interaction between atmospheric forcing and snowpack response are virtually unknown, especially at the daily to hourly timescale. The character of snowfalls during the accumulation seasons for this icefield are investigated using high resolution time series from two acoustic snow depth sensors and other relevant meteorological parameters. It is found that the most drastic changes in snow depth occur from infrequent large snowfalls. Using an adaption of an Environment Canada snow depth algorithm, snowfall events are identified and their timing is quantified based on a system of thresholds, running averages and ratios between the snow depth sensors. Synoptic conditions are examined using meteorological reanalysis data and trajectory analysis to determine the moisture origin and pathway. / Graduate

Page generated in 0.0392 seconds