• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Harnessing Social Networks for Social Awareness via Mobile Face Recognition

Bloess, Mark 14 February 2013 (has links)
With more and more images being uploaded to social networks each day, the resources for identifying a large portion of the world are available. However the tools to harness and utilize this information are not sufficient. This thesis presents a system, called PhacePhinder, which can build a face database from a social network and have it accessible from mobile devices. Through combining existing technologies, this is made possible. It also makes use of a fusion probabilistic latent semantic analysis to determine strong connections between users and content. Using this information we can determine the most meaningful social connection to a recognized person, allowing us to inform the user of how they know the person being recognized. We conduct a series of offline and user tests to verify our results and compare them to existing algorithms. We show, that through combining a user’s friendship information as well as picture occurrence information, we can make stronger recommendations than based on friendship alone. We demonstrate a working prototype that can identify a face from a picture taken from a mobile phone, using a database derived from images gathered directly from a social network, and return a meaningful social connection to the recognized face.
2

Harnessing Social Networks for Social Awareness via Mobile Face Recognition

Bloess, Mark 14 February 2013 (has links)
With more and more images being uploaded to social networks each day, the resources for identifying a large portion of the world are available. However the tools to harness and utilize this information are not sufficient. This thesis presents a system, called PhacePhinder, which can build a face database from a social network and have it accessible from mobile devices. Through combining existing technologies, this is made possible. It also makes use of a fusion probabilistic latent semantic analysis to determine strong connections between users and content. Using this information we can determine the most meaningful social connection to a recognized person, allowing us to inform the user of how they know the person being recognized. We conduct a series of offline and user tests to verify our results and compare them to existing algorithms. We show, that through combining a user’s friendship information as well as picture occurrence information, we can make stronger recommendations than based on friendship alone. We demonstrate a working prototype that can identify a face from a picture taken from a mobile phone, using a database derived from images gathered directly from a social network, and return a meaningful social connection to the recognized face.
3

Harnessing Social Networks for Social Awareness via Mobile Face Recognition

Bloess, Mark January 2013 (has links)
With more and more images being uploaded to social networks each day, the resources for identifying a large portion of the world are available. However the tools to harness and utilize this information are not sufficient. This thesis presents a system, called PhacePhinder, which can build a face database from a social network and have it accessible from mobile devices. Through combining existing technologies, this is made possible. It also makes use of a fusion probabilistic latent semantic analysis to determine strong connections between users and content. Using this information we can determine the most meaningful social connection to a recognized person, allowing us to inform the user of how they know the person being recognized. We conduct a series of offline and user tests to verify our results and compare them to existing algorithms. We show, that through combining a user’s friendship information as well as picture occurrence information, we can make stronger recommendations than based on friendship alone. We demonstrate a working prototype that can identify a face from a picture taken from a mobile phone, using a database derived from images gathered directly from a social network, and return a meaningful social connection to the recognized face.

Page generated in 0.0431 seconds