• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Understanding the characteristics of droughts over Eastern Africa in past and future climates

Nguvava, Mariam Melikizedek 17 February 2021 (has links)
Drought poses a threat to socio-economic activities across eastern Africa and its river basins. While there are indications that global warming may continue to enhance evaporation and intensify droughts at all scales, most drought projections over eastern Africa are based on rainfall alone and are limited to meteorological droughts. The present study combines rainfall and Potential Evapotranspiration (PET) to examine the characteristics of meteorological and hydrological droughts in present and future climates at the regional and river basin scales. To accomplish that we have applied five objectives; i) Study the temporal and spatial characteristics of eastern Africa droughts modes, ii) Investigate how some atmospheric teleconnections influence the characteristics of the Africa droughts modes, iii) Examine the influence of 1.5°C and 2°C global warming levels on drought modes in eastern Africa under two future climate scenarios, RCP 4.5 and RCP8.5 iv) Assess how increases in global warming will influence drought characteristics over eastern African river basins. v) Examine the potential impacts of climate change and land use change on water availability in the Rufiji River basin (RRB), Tanzania, with an emphasis of hydrological droughts in this basin. Different types of datasets, including gridded and station observation datasets, regional climate model simulations (CORDEX: Coordinated Regional Climate Downscaling Experiment) and hydrological simulations (SWAT: Soil and Water Assessment Tool), were analysed for the study. The meteorological drought were characterised using two indices (i.e. Standardized Precipitation Evapotranspiration Index, SPEI; Standardized Precipitation Index, SPI) at 3- and 12-month scales, while the hydrological droughts were characterised using four indices (i.e. soil water index, SWI; Surface Runoff Index, RFI; Water Yield Index, WYI; and Stream Flow index, SFI). The study combined principal component analysis (PCA) with wavelet analysis to identify the spatio-temporal structure of four dominant drought modes over the region. It also used wavelet coherence to quantify the influence of four atmospheric teleconnections (i.e. El Niño Southern Oscillation, ENSO; Indian Ocean Dipole, IOD; Tropical Atlantic Dipole Index, TADI; and Quasi-Biennial Oscillation, QBO) on the drought modes. The study also projects the characteristics of future droughts over eastern Africa and its major river basins at different global warming levels (GWLs). Series of hydrological simulations were used to assess the sensitivity of future droughts to four land use change scenarios (i.e. increase in forestry, shrubs, cropland and agriculture) over the Rufiji River Basin (RRB), a prominent river basin in eastern Africa. Although eastern Africa have been documented with several drought studies, the application of a combination of PCA, Wavelet analysis, wavelet coherence and Self Organizing Maps provides more comprehensive representation of droughts in the region using SPEI/SPI derived from both models and observations The results of the study show that the four drought modes, which have their core areas over different parts of eastern Africa, account for more than 45% of drought variability in the region. All the drought modes are strongly coupled with either ENSO or IOD indices (or both); but, in addition, one of the modes is also strongly coupled with the TADI. CORDEX models give a realistic simulation of the relevant climate variables for calculating drought indices over eastern Africa and the river basins. However, the ensemble mean struggles to reproduce the spatial distribution and frequency of drought intensity in the region. The CORDEX simulations project no changes in the spatial structure of the drought modes but suggest an increase in SPEI drought intensity and frequency over the hotspots of the drought modes and elsewhere in the region. The magnitude of the increase, which varies over the drought mode hotspots, increases with increasing GWLs. The projections also show that the increase in intensity and frequency of drought can be attributed more to increased PET than to reduced precipitation. In contrast to the SPEI projection, the SPI projection shows a weak change in intensity and frequency of droughts, and the magnitude of the increase does not vary with the GWLs. Over the river basins, the SPEI projections are more robust than the SPI projections. Over the RRB, the future projections of some hydrological drought indices (i.e. RFI and SFI) follow the change in the SPEI projections, while others (i.e. SWI and WYI) follow that of SPI. Among the four land use scenarios considered, only forestry and shrubs show a substantial change in the hydrological drought indices. The results of the study thus give valuable insight into the characteristics of future droughts in eastern Africa and provide a useful guide to the effectiveness of using land cover to reduce the severity of hydrological droughts over river basins in the region. However, resolution of CORDEX dataset (50km, i.e. 0.44deg) could be among the potential limitation as it is too low to capture the influence of local-scale processes (e.g. sea breeze, mountain induced circulations) on drought over the region.
2

Urbanization and Water Resources Vulnerability in the Kumasi Metropolitan Area, Ghana / Urbanisering och sårbara vattenresurser i Kumasi storstadsregion, Ghana

Mohammed, Suraj January 2004 (has links)
<p>Most urban areas of developing countries were hitherto experiencing unprecedented growth in their population, the phenomenon commonly referred to as urbanization, which in this study can be said to be the proportion of urban population relative to the total population of a region. </p><p>This phenomenon has opportunities vis-à-vis challenges, whose impact on natural resources in general and water resources in particular, cannot be over- emphasized. It is within the context of these urban challenges that this study attempts to look into and possibly assess the situation in the urban and peri- urban areas of Kumasi Metropolitan Area (KMA) in Ghana, whose urbanization processes is prejudiced by this study to be increasing rapidly. </p><p>The study specifically attempted to assess thechanges in the urbanization patterns and the possible future urbanization trend of the area within a specific time frame. The study also attempts to look at the causes of this urbanization, and its impact on water resources in the Area, both qualitatively and quantitatively, envisaged to be the results of socio-economic activities taking place in the Area. Finally, the study attempts to look into the measures put in place to curb these challenges. </p><p>Amid paucity of data, however, the study reveals that the most single contributor of urbanization processes in the area has been migration from the countryside, and in particular from the northern part of the country. The study also reveals the fact that even though the general quality standard of some water resources is better, the largely uncontrolled socio-economic activities, coupled with the deplorable sanitary conditions in the KMA, has potential to degrade the water resources in the KMA. In addition, the study reveals that little attention is given, in terms of policy formulation to curb this urbanization processes and to protect water resources in the area.</p>
3

Urbanization and Water Resources Vulnerability in the Kumasi Metropolitan Area, Ghana / Urbanisering och sårbara vattenresurser i Kumasi storstadsregion, Ghana

Mohammed, Suraj January 2004 (has links)
Most urban areas of developing countries were hitherto experiencing unprecedented growth in their population, the phenomenon commonly referred to as urbanization, which in this study can be said to be the proportion of urban population relative to the total population of a region. This phenomenon has opportunities vis-à-vis challenges, whose impact on natural resources in general and water resources in particular, cannot be over- emphasized. It is within the context of these urban challenges that this study attempts to look into and possibly assess the situation in the urban and peri- urban areas of Kumasi Metropolitan Area (KMA) in Ghana, whose urbanization processes is prejudiced by this study to be increasing rapidly. The study specifically attempted to assess thechanges in the urbanization patterns and the possible future urbanization trend of the area within a specific time frame. The study also attempts to look at the causes of this urbanization, and its impact on water resources in the Area, both qualitatively and quantitatively, envisaged to be the results of socio-economic activities taking place in the Area. Finally, the study attempts to look into the measures put in place to curb these challenges. Amid paucity of data, however, the study reveals that the most single contributor of urbanization processes in the area has been migration from the countryside, and in particular from the northern part of the country. The study also reveals the fact that even though the general quality standard of some water resources is better, the largely uncontrolled socio-economic activities, coupled with the deplorable sanitary conditions in the KMA, has potential to degrade the water resources in the KMA. In addition, the study reveals that little attention is given, in terms of policy formulation to curb this urbanization processes and to protect water resources in the area.

Page generated in 0.2535 seconds