• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Growth characteristics and freezing tolerance of Zoysiagrass cultivars and experimental progeny

Okeyo, David Odiwuor January 1900 (has links)
Doctor of Philosophy / Department of Horticulture, Forestry, and Recreation Resources / Jack D. Fry / ‘Meyer’ zoysiagrass (Zoysia japonica Steud.) has been the predominant cultivar in the transition zone of the U.S. since its release in 1952, primarily because of its good freezing tolerance. However, it is slow to establish and recover after sod harvest, and has poor shade tolerance. I evaluated ‘Meyer’, some commonly used cultivars, and 18 progeny from crosses of ‘Emerald’ (Z. japonica × Z. tenuifolia Willd. ex Thiele) × Z. japonica or Z. matrella (L.) Merr. × Z. japonica for stolon growth characteristics; sod tensile strength and recovery after harvest; shade resistance; freezing tolerance and its relationship to autumn color retention; and the potential influence of dehydrin and chitinase gene expression in freezing tolerance. After planting vegetative plugs, rates of stolon initiation (r = 0.66 in 2007, r = 0.94 in 2008) and elongation (r = 0.66 in 2007, r = 0.53 in 2008) were positively correlated (P < 0.05) with zoysiagrass coverage. At 60 days after sod harvest, recovery growth coverage ranged from 17% to 97% and a progeny from Z. matrella × Meyer (97% coverage) demonstrated superior sod recovery growth to Meyer (38% coverage). Under 68% silver maple (Acer saccharinum L.) tree shade, stolon number was reduced 38 to 95% and stolon length 9 to 70% compared to turf in full sun. Several progeny from crosses between Emerald or a Z. matrella x Z. japonica produced more and/or longer stolons than Meyer in the shade, suggesting potential for increased shade tolerance. Autumn color in October and November, 2007 was positively correlated (r = 0.44 and r = 0.58, P < 0.01) with the lethal temperature killing 50% of tillers (LT50) in December, 2007. All grasses except Cavalier and one progeny were equivalent to Meyer in freezing tolerance with LT50s ranging from -0.2 to -12.2 oC. Dehydrin-like (11.9, 23, 44.3, and 66.3 kDa) and chitinase (26.9 kDa) gene expression increased with cold acclimation and was similar among all grasses. In general, some new zoysiagrass progeny exhibited superior growth and/or stress tolerances compared to Meyer, which bodes well for potential release of a new cultivar for use in the transition zone.
2

Effects of Biosolids on Tall Fescue-Kentucky Bluegrass Sod Production and Soil Chemical and Physical Properties

Cataldi, Joseph Derik 02 July 2013 (has links)
Composted biosolids have been shown to enhance turfgrass establishment and growth more than fertilizer alone, but few studies have investigated the production of turfgrass using uncomposted biosolids. Increasingly employed treatment methods that generate pathogen-free, low pollutant-containing biosolids are creating alternative products for use in urban settings.  Understanding the effects of these uncomposted and alternative biosolids products on turfgrass culture and soil chemical and physical properties is essential to understanding the benefits these products may provide in sod production systems. The objectives of this study were to compare processing methods, application and N mineralization rates of two biosolids products and an inorganic fertilizer control for sod fertilization on 1) agronomic parameters related to turfgrass quality, 2) the amount of soil, C and P exported at harvest, and 3) chemical and physical properties of the soil following sod harvest as an indicator of the benefits of biosolids use. The study was conducted on a sod farm in Remington, Virginia on a silt loam Ashburn-Dulles complex from 2009 to 2012. The biosolids products were applied at estimated plant available nitrogen (PAN) rates of 98 kg N ha-1  (0.5X), 196 kg N ha-1 (1.0X) and 294 kg N ha-1  (1.5X) for a tall fescue (Festuca arundinacea Schreb. \'Rebel Exeda\' \'Rebel IV\' and \'Justice\')/ Kentucky bluegrass (Poa pratensis L. \'Midnight\') mixture. One biosolids product was an anaerobically digested dewatered cake applied at 15, 30.5 and 46 wet Mg ha-1. The second biosolids product was the same cake blended with wood fines applied at 17, 34 and 51 wet Mg ha-1. The biosolids treatments were compared to an inorganic fertilizer control that supplied 196 kg N ha-1 through three applications over the production cycle. There were no differences in establishment between the cake biosolids treatments and the inorganic fertilizer control, but all of the blended biosolids were slower to establish. Only the 1.0X and 1.5X PAN rates from the cake biosolids matched the inorganic fertilizer control in producing an acceptable quality sod in ten months. Lower nitrogen uptake between the blended biosolids treatments compared to the inorganic fertilizer control and lower although acceptable sod quality ratings at harvest of the 1.0X cake biosolids indicate our PAN estimates of 30% organic nitrogen mineralization overestimated the PAN for both materials. There were no differences in sod tensile strength between the 1.5X cake biosolids and inorganic fertilizer control. There were no differences in transplant rooting strength among all treatments. After repeat applications of biosolids, the 0.5X rates did not increase soil extractable phosphorus, while the 1.0X rates steadily increased soil extractable phosphorus at. The 1.0X and 1.5X biosolids rates increased soil organic matter content, but only the 1.5X rate of cake biosolids reduced soil bulk density and mineral matter export at harvest. Overall results indicate that the cake biosolids are an acceptable fertility alternative to inorganic fertilizer, and applications of biosolids for sod production can improve soil quality. Sod growers should consider using biosolids in a rotational system to offset rising production costs and improve production field soil quality. / Master of Science

Page generated in 0.102 seconds