• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 5
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Superionic Conductive Solid Polymer Electrolyte Based Solid Sodium Metal Batteries with Stable Cycling Performance at Room Temperature

Yang, Run 03 May 2021 (has links)
No description available.
2

Generation and Utilization of Organoalkali Reagents via Reduction or Decarboxylation / 還元あるいは脱カルボキシル化を利用した有機アルカリ金属反応剤の発生と利用

Wang, Shuo 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第24432号 / 理博第4931号 / 新制||理||1704(附属図書館) / 京都大学大学院理学研究科化学専攻 / (主査)教授 依光 英樹, 教授 若宮 淳志, 教授 畠山 琢次 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
3

Investigation of Alkali Metal-Host Interactions and Electrode-Electrolyte Interfacial Chemistries for Lean Lithium and Sodium Metal Batteries

Kautz Jr, David Joseph 21 June 2021 (has links)
The development and commercialization of alkali ion secondary batteries has played a critical role in the development of personal electronics and electric vehicles. The recent increase in demand for electric vehicles has pushed for lighter batteries with a higher energy density to reduce the weight of the vehicle while with an emphasis on improving the mile range. A resurgence has occurred in lithium, and sodium, metal anode research due to their high theoretical capacities, low densities, and low redox potentials. However, Li and Na metal anodes suffer from major safety issues and long-term cycling stability. This dissertation focuses on the investigation of the interfacial chemistries between alkali metal-carbon host interactions and the electrode-electrolyte interactions of the cathode and anode with boron-based electrolytes to establish design rules for "lean" alkali metal composite anodes and improve long-term stability to enable alkali metal batteries for practical electrochemical applications. Chapter 2 of this thesis focuses on the design and preliminary investigation of "lean" lithium-carbon nanofiber (<5 mAh cm-2) composite anodes in full cell testing using a LiNi0.6Mn0.2Co0.2O2 (NMC 622) cathode. We used the electrodeposition method to synthesize the Li-CNF composite anodes with a range of electrodeposition capacities and current densities and electrolyte formulations. Increasing the electrodeposition capacity improved the cycle life with 3 mAh cm-2 areal capacity and 2% vinylene carbonate (VC) electrolyte additive gave the best cycle life before reaching a state of "rapid cell failure". Increasing the electrodeposition rate reduced cycling stability and had a faster fade in capacity. The electrodeposition of lithium metal into a 2D graphite anode significantly improved cycle life, implying the increased crystallinity of the carbon substrate promotes improved anode stability and cycling capabilities. As the increased crystallinity of the carbon anode was shown to improve the "lean" composite anode's performance, Chapter 3 focuses on utilizing a CNF electrode designed with a higher degree of graphitization and probing the interacting mechanism of Li and Na with the CNF host. Characterization of the CNF properties found the material to be more reminiscent of hard carbon materials. Electrochemical analysis showed better long-term performance for Na-CNF symmetric cells. Kinetic analysis, using cyclic voltammetry (CV), revealed that Na ions successfully (de)intercalated within the CNF crystalline interlayers, while Li ions were limited to surface adsorption. A change in mechanism was quickly observed in the Na-CNF symmetric cycling from metal stripping/plating to ion intercalation/deintercalation, enabling the superior cycling stability of the composite anode. Improving the Na metal stability is necessary for enabling Na-CNF improved long-term performance. Sodium batteries have begun to garner more attention for grid storage applications due to their overall lower cost and less volumetric constraint required. However, sodium cathodes have poor electrode-electrolyte stability, leading to nanocracks in the cathode particles and transition metal dissolution. Chapter 4 focuses on electrolyte engineering with the boron salts sodium difluoro(oxolato)borate (NaDFOB) and sodium tetrafluoroborate (NaBF4) mixed together with sodium hexafluorophosphate (NaPF6) to improve the electrode-electrolyte compatibility and cathode particle stability. The electrolytes containing NaDFOB showed improved electrochemical stability at various temperatures, the formation of a more robust electrode-electrolyte interphase, and suppression in transition metal (TM) reduction and dissolution of the cathode particles measured after cycling. In Chapter 5, we focus on the electrochemical properties and the anode-electrolyte interfacial chemistry properties of the sodium borate salt electrolytes. Similar to Chapter 4, the NaDFOB containing electrolytes have improved electrochemical performance and stability. Following the same electrodeposition parameters as Chapter 2, we find the NaDFOB electrolytes improves the stability of electrodeposited Na metal and the "lean" composite anode's cyclability. This study suggests the great potential for the NaDFOB electrolytes for Na ion battery applications. / Doctor of Philosophy / The ever-increasing demand for high energy storage in personal electronics, electric vehicles, and grid energy storage has driven for research to safely enable alkali metal (Li and Na) anodes for practical energy storage applications. Key research efforts have focused on developing alkali metal composite anodes, as well as improving the electrode-electrolyte interfacial chemistries. A fundamental understanding of the electrode interactions with the electrolyte or host materials is necessary to progress towards safer batteries and better battery material design for long-term applications. Improving the interfacial interactions between the host-guest or electrode-electrolyte interfaces allows for more efficient charge transfer processes to occur, reduces interfacial resistance, and improves overall stability within the battery. As a result, there is great potential in understanding the host-guest and electrode-electrolyte interactions for the design of longer-lasting and safer batteries. This dissertation focuses on probing the interfacial chemistries of the battery materials to enable "lean" alkali metal composite anodes and improve electrode stability through electrolyte interactions. The anode-host interactions are first explored through preliminary design development for "lean" alkali composite anodes using carbon nanofiber (CNF) electrodes. The effect on increasing the crystallinity of the CNF host on the Li- and Na-CNF interactions for enhanced electrochemical performance and stability is then investigated. In an effort to improve the capabilities of Na batteries, the electrode-electrolyte interactions of the cathode- and anode-electrolyte interfacial chemistries using sodium borate salts are probed using electrochemical and X-ray analysis. Overall, this dissertation explores how the interfacial interactions affect, and improve, battery performance and stability. This work provides insights for understanding alkali metal-host and electrode-electrolyte properties and guidance for potential future research of the stabilization for Li- and Na-metal batteries.
4

A Study Of Components For Lithium And Sodium Batteries And Other Storage Devices

Michaud, Xavier January 2019 (has links)
An investigation of electrochemical storage device materials has been undertaken in four parts. The bulk and interfacial resistance of Na+ beta-alumina tubes were separated using a galvanostatic charge-discharge method. Sodium silicide was characterized to better understand its synthesis. BiMn2O5 was produced using a sol-gel method and tested for pseudocapacity. Different lithium ion anode and cathode materials were deposited using a new electrophoretic deposition method. A novel galvanostatic charge-discharge method was developed for the determination of bulk and interface resistance in Na+ beta-alumina solid electrolytes [BASE]. Dense and duplex BASE tubes were tested by varying the exposed surface area. The results of dense BASE tube pairs were used to determine the bulk and interfacial resistance components, while duplex BASE tubes were tested to determine the reduction in interfacial resistance. It was found that duplex tubes had reduced the interfacial resistance by 75%, when compared to a uniformly dense electrolyte. Sodium silicide was characterized using various methods to better understand the phase and the Na-Si phase diagram. EMF experiments using Na+ BASE tubes was used to determine the activity in the silicon rich region of the phase diagram, which showed a sodium activity of 0.5 at 550°C. TGA/DSC was used to determine phase transformation temperatures, as well as the heat of formation for NaSi, which was recorded to be below 1 kJ mol-1. A sol-gel precipitation method was used to produce fine BiMn2O5 powders used for supercapacitors. The powders resulting from a consistent method were tested for pseudocapacitance using bulk and thin film electrodes. Bulk electrodes had a gravimetric capacitance of 10 F g-1, while thin film electrodes only reached 2.6 F g-1. Lithium ion battery anode (Li4Ti5O12) and cathode (LiFePO4, LiMn2O4, LiMn1.5Ni0.5O4) materials were electrophoretically deposited with the assistance of PAZO-Na and CMC-Na. Cathodes were successfully deposited on aluminium substrates, and were tested in the potential window 2 – 4.3 V. The LiFePO4 cathodes showed capacity of 146.7 mAh g-1 at C/10, while showing capacity retention of 103% after 50 cycles. / Thesis / Doctor of Philosophy (PhD) / The goal of this work is to examine materials used in different types of electrochemical storage devices. The modification of resistive properties of β-alumina electrolytes are examined for use in high temperature sodium batteries. Electrophoretic deposition methods are used to rapidly make thin electrodes for lithium ion batteries and supercapacitors. The stoichiometric compound NaSi, a potentially safer and greener method of producing hydrogen gas, is characterized for a better understanding of its properties, and therefore production.
5

KINETICS AND CHEMO-MECHANICS IN SODIUM METAL AND ALLOY ELECTRODES

Susmita Sarkar (16325238) 14 June 2023 (has links)
<p>Sodium (Na)-ion battery displays many properties similar to Lithium (Li)-ion battery, such as operating principles and capacity, which noticeably compressed the Na-ion battery cathode exploration period. Having said that, anode materials of Na-ion battery is still underperforming as commercial graphite is inadequate in storing bulky Na ions. In the search for anode materials, both alloy-type and Na metal anode materials have gained popularity as these materials can absorb more charges and have higher storage capacity. It is essential to remember that such materials exhibit massive volume expansion upon sodiation and hence experience considerable mechanical stress upon cycling, leading to fractures and pulverization of the electrodes. In addition to electrode stability, ionic motions between the electrode and electrolyte are pivotal in determining the battery response. The decomposition of the electrolyte cocktails forms a passivation layer on the electrode surface, known as solid electrolyte interphase (SEI), which can rupture and regenerate in unstable cycles. Rickety SEI can cause the consumption of active Na and the formation of local hotspots for notorious dendrite growth, leading to short battery durability.</p> <p><br></p> <p>In the first part of the thesis, Tin (Sn) has been selected as an exemplar system to study the dynamic changes in a Na-ion battery. Higher ion-uptake capabilities of Sn electrode come with a price of large structural and morphological changes and can be controlled by careful charting of non-active phases such as binder and suitable electrolyte solution. This work comprehensively studies the technical challenges associated with Sn with different binder domains and in different liquid electrolyte environments. Parallelly, the sensitivity of the Na-Sn system towards the operating potential window and the crosstalk between the working electrode (alloying and de-alloying) and the counter electrode (plating and stripping) has been untied. Also, a fundamental understanding of the materials-transport-interface interactions during thermal abuse tests and their implication on the safety aspects of Na-ion batteries has been addressed. </p> <p><br></p> <p>Following that, the morphological stability of the Na metal anode is investigated based on the distinct electrochemical reactions arising from the composition of different liquid electrolytes. The role heterogeneity in the SEI layer of Na metal for the growth of dendritic patterns has been discussed. A unified framework incorporating a detailed electrochemical study of various electrolyte formulations, cognizant of the reactions and kinetics at the electrode-electrolyte interface, has been developed. To mechanistically counter the heterogeneity implications and synergistically leverage the electrolyte-additive-driven improvement in ionic transport, a flux-homogenizing separator has been introduced to extend the battery cycling. Based on this synergistic approach, the complex interplay between the homogeneity in SEI composition, electrodeposition/dissolution morphology, and cell performance in Na-metal-based batteries has been identified.</p> <p><br></p> <p>This work tried to offer fresh insights on fundamental mechanisms governing the evolution of the electrode-electrolyte interphases and their role in determining electro-chemo-mechano-thermal stability for future research endeavors in the Na-ion battery field. </p>

Page generated in 0.0639 seconds