Spelling suggestions: "subject:"soft matter"" "subject:"oft matter""
11 |
Self assembly in soft matterChremos, Alexandros January 2009 (has links)
The term “soft matter” applies to a variety of physical systems, such as liquids, colloids, polymers, foams, gels, and granular materials. The most fascinating aspect of soft matter lies in the fact that they are not atomic or molecular in nature. They are instead macromolecular aggregates, whose spatial extent lies in the domain 1 nm to 1 ¹m. Some of the most important examples of soft matter are polymers, which exhibit intriguing and useful physical properties. In this work, the adsorption and self assembly of linear and star polymers on smooth surfaces are studied using coarse-grained, bead-springmolecular models and Langevin dynamics computer simulations. The aim is to gain insight on atomic-forcemicroscopy images of polymer films on mica surfaces, adsorbed from dilute solution following a good solvent-to-bad solvent quenching procedure. In the case of linear polymers, under certain experimental conditions, a bimodal cluster distribution is observed. It is demonstrated that this type of distribution can be reproduced in the simulations, and rationalized on the basis of the polymer structures prior to the quench. In addition to providing insight on experimental observations, the simulation results support a number of predicted scaling laws such as the decay of the monomer density as a function of distance from the surface, and the scaling of the filmheight with the strength of the polymer-surface interactions. Star polymers represent a special class of polymers, in which one end of each linear chain is tethered to a small central core to forma single particle. The discovery of these molecules led to the synthesis of a wide range of new materials. Their structures are effectively considered as intermediate between those of colloids and linear polymers. We explore the behaviour of the star polymers (which are like “soft colloids”) in the proximity of a surface, using Langevin dynamics simulations. A number of different measurements such as the height, radius of gyration, and asphericity of adsorbed stars with different number of arms, are shown to provide valuable insights on experimental findings. The simplest soft matter systems consist of spherical, rigid colloidal particles. Examples of such particles are chemically synthesized polystyrene or silica particles. We investigated the neighbour distribution in a two-dimensional polydisperse harddisk fluid, corresponding physically to a colloidal monolayer. The disk diameter distribution was defined by a power-law with the aim of realizing a scale-free nearneighbour network. Scale-free (power-law) behaviour is found in many important networks, for example, in transportation systems, biochemical reactions, scientific and movie-actor collaborations, and sexual contacts. We have provided the first example of a scale-free network in amodel condensed-matter system. Finally, we use genetic algorithms, a method for efficiently searching for minima on energy landscapes, to investigate the ordered equilibrium structures formed by binary mixtures of anisotropic dipolar particles confined on a plane, under the presence of an external magnetic field. The anisotropy of the interparticle forces is controlled by tilting the external magnetic field with respect to the plane. Initially, as the field is tilted the structures are only slightly perturbed, but once the anisotropy exceeds a critical value, completely new structures emerge.
|
12 |
Rheology of frictional grainsGrob, Matthias 09 August 2016 (has links)
Diese Arbeit behandelt die Beschreibung des Fließens und des Blockierens von granularer Materie. Granulare Materie kann einen Verfestigungsübergang durchlaufen. Dieser wird Jamming genannt und ist maßgeblich durch vorliegende Spannungen sowie die Packungsdichte der Körner, welche das Granulat bilden, bestimmt. Die Rheologie dichter granularer Medien ist zusätzlich zu Spannung und Packungsdichte stark durch Reibung zwischen den Körnern beeinflusst. Wir zeigen mittels numerischer Simulationen und analytischer Betrachtungen, wie Reibung Jamming qualitativ verändert. Reibungsfreies Jamming ist ein kontinuierlicher Phasenübergang mit einem kritischen Punkt bei verschwindender Spannung. Reibungsbehaftetes Jamming ist ein diskontinuierlicher Phasenübergang mit einem kritischen Punkt bei endlicher Spannung. Der kritische Punkt bei endlicher Spannung führt zu bemerkenswertem Verhalten: Oberhalb der kri- tischen Packungsdichte gibt es ein Intervall an Packungsdichten, innerhalb dessen große oder kleine Spannungen zum Fließen führen, mittlere Spannungen hingegen führen zum Blockieren des Mediums. Das Fließverhalten nahe Jamming ist stark durch die Systemgröße beeinflusst: Es gibt eine kritische Systemgröße, oberhalb derer zeitabhängiger Fluss entsteht. Dieser zeitabhängige Fluss wird durch die Ausbildung von großskaligen Strukturen im Spannungsfeld erklärt. Sowohl die großskaligen Strukuren als auch der damit einhergehende zeitabhängige Fluss sind neuartige Phänomene im Fluss von trockenen Granulaten und durch Rei- bung hervorgerufen.
|
13 |
Dynamics of hard and soft colloids in confined geometries and on structured surfacesYarlagadda, Sri Charan 21 September 2015 (has links)
We investigated the depletion interactions of colloids and hindrance behavior of hard and soft colloidal particles near neighboring walls. We first used numerical modeling to compute depletion interaction strengths for simple geometries which eventually guided our experiments to make interactions highly selective. The model helped us in identifying the important parameters to finetune these interactions and shed light on geometric design rules to optimize desirable shape-selective interactions on a variety of complex geometries. We further reported experimental studies that highlight the differences in the dynamics of hard and soft colloids under confinement using video microscopy and particle tracking. It was found that both soft sphere systems that we investigated (swollen polymer particles, core/shell microgels) behave differently from hard sphere systems under all degrees of confinement that were measured. Our findings suggest that soft sphere systems have lesser hindrance compared to hard sphere counterparts and the hindrance varies as a function of softness. In order to understand the soft sphere confinement dynamics more clearly, implications for future research are discussed.
|
14 |
Microindentation for Characterization of Interactions in Liquid Metal CompositesAlbacarys, Daniel Alexander 31 May 2024 (has links)
Liquid Metal (LM) Composites are a rapidly expanding field within function materials research. Composed of isolated LM droplets dispersed in an elastomer, these composites can exhibit properties that include electrical conductivity, thermal conductivity, and programmable and anisotropic mechanical properties. Microindentation is a material characterization technique that can be used to study the micron-scale droplet-droplet interactions between the inclusions in these composites. Because most microindentation systems are incapable of producing plastic/elastic deformation volumes large enough to measure the interaction between inclusion and matrix or inclusion and inclusion in these systems, a specialized microindenter is designed and detailed here. The indenter is then used to test various droplet size, spacings, and matrix material combinations to view the mechanical and electrical implications of these variables. These materials were analyzed with a basic fracture energy scaling formula. It was also found that resistivity can decrease by up to seven orders of magnitude after droplet rupture, with as little as a 20μm elastomer film separating droplets before rupture. Continued studies of these phenomena will allow us to exploit the properties of these materials in new and interesting ways. / Master of Science / When a metal which is a liquid at room temperature (eutectic gallium-indium) is dispersed inside a soft, stretchable material such as a silicone rubber, it creates a unique functional material. These materials go beyond their typical uses by having new and exciting properties such as the ability to conduct heat and electricity. Not only do these materials have these properties, but we can also control them through specific manufacturing steps. These materials are called liquid metal composites or liquid metal embedded elastomers. These materials can be used to create flexible wiring for soft electronics and robots which can bend and stretch to suit their environment. One component of the interactions that lead to these properties is the interaction between pairs of droplets of liquid metal inside of the silicone.
To study these interactions, we utilize micro-indentation which produces very small and precise deformations in a material. By slowly pressing on the material, and measuring forces, displacements, and electrical resistance, we can gain a closer insight into how the interactions of droplets and rubber produce these properties. These materials can be modeled using an analysis of fracture energy, and pairs of droplets decrease electrical resistance by over 10 million times when droplets combine. By studying these interactions, we gain a greater sense of how to control the properties of these materials, and can create new wearable devices that can bend and stretch with the human body's movements.
|
15 |
Energy-Driven Pattern Formation in Planar Dipole-Dipole SystemsKent-Dobias, Jaron P 01 January 2014 (has links)
A variety of two-dimensional fluid systems, known as dipole-mediated systems, exhibit a dipole-dipole interaction between their fluid constituents. The com- petition of this repulsive dipolar force with the cohesive fluid forces cause these systems to form intricate and patterned structures in their boundaries. In this thesis, we show that the microscopic details of any such system are irrelevant in the macroscopic limit and contribute only to a constant offset in the system’s energy. A numeric model is developed, and some important stable domain morphologies are characterized. Previously unresolved bifurcating branches are explored. Finally, by applying a random energy background to the numer- ics, we recover the smörgåsbord of diverse domain morphologies that are seen in experiment. We develop an empirical description of these domains and use it to demonstrate that the system's nondimensional parameter, which is the ratio of the line tension to the dipole–dipole density, can be extracted for any domain using only its shape.
|
16 |
Behaviour of uniformly dimpled colloidal particlesIvell, Samantha January 2014 (has links)
Uniformly dimpled colloidal particles are studied using laser scanning confocal microscopy and optical tweezing, alongside real-space image analysis. In particular, a comparison is made between the behaviour of these particles with that of isotropic spherical particles of the same size and polydispersity. We begin by detailing the synthetic techniques as well as the methods used for both experiments and simulations in this work. We then probe the structures and ordering exhibited by the dimpled particles and their spherical counterparts at a single featureless wall. Only the first layer at the wall is observed, and pronounced differences in both the translational and orientational order between the two types of particle is found. Furthermore, we show that the presence of the dimple leads to disordered structures that develop over time. Next, we reduce the dimensionality of the system to quasi-two and study the depletion induced interactions in a monolayer of colloidal particles at a single featureless wall. Using both confocal microscopy and Monte Carlo simulations, we illustrate the selectivity of the depletion interaction with regard to particle shape and polymer size. A level of complexity is then added to the problem by introducing a second colloidal system of small spherical particles. The resulting binary mixture, still with additional non-adsorbing polymer and in a monolayer at a wall, allows us to investigate so-called “lock and key” binding. We show that the inclusion of a lock particle cavity, whose shape and size is complementary to those of the key particle, significantly favours binding behaviour, which is further improved by using a depletant consisting of a small polymer and charge-screening salt. Finally, the depletion induced force between lock and key particles at contact is directly measured using optical tweezers. The dependence of the force due to depletion upon the overlap volume between the particles is illustrated, and we find that the strongest force is produced when the key is held within the cavity of the dimpled lock, demonstrating semiquantitative agreement with theoretical predictions.
|
17 |
Microscopic forces and flows due to temperature gradientsGanti, Raman S. January 2018 (has links)
Nano-scale fluid flow is unlike transport on the macro-scale. Pressure gradients typically dominate effects on a large scale while thermal gradients contribute negligibly to the motion of fluid. The situation entirely reverses on the nano-scale. At a microscopic level, flows induced by thermal gradients are caused by forces that act on atoms or molecules near an interface. These thermo-osmotic forces cannot, at present, be derived analytically or measured experimentally. Clearly, it would be useful to calculate these forces via molecular simulations, but direct approaches fail because in the steady-state, the average force per particle vanishes, as the thermo-osmotic force is balanced by a gradient in shear stress. In our journey to indirectly calculate the osmotic force, we met another unknown in the field of molecular theory at interfaces: the microscopic pressure tensor. The latter is an open problem since the microscopic pressure near an interface is not uniquely defined. Using local thermodynamics theories, we relate the thermo-osmotic force to the gradient of the microscopic pressure tensor. Yet, because the pressure is not uniquely defined, we arrive at multiple answers for the thermo-osmotic force, where at most one can be correct. To resolve the latter puzzle, we develop a direct, non-equilibrium simulation protocol to measure the thermo-osmotic force, whereby a thermal gradient is imposed and the osmotic force is measured by eliminating the shear force. Surprisingly, we find that the osmotic force cannot be derived from the gradient of well-known microscopic pressure expressions. We, therefore, derive a thermodynamic expression that gets close. In this work, we report the first, direct calculation of the thermo-osmotic force while simultaneously showing that standard microscopic pressure expressions fail to predict pressure gradients.
|
18 |
Deformed Soft Matter under ConstraintsBertrand, Martin 13 January 2012 (has links)
In the last few decades, an increasing number of physicists specialized in soft matter, including polymers, have turned their attention to biologically relevant materials. The properties of various molecules and fibres, such as DNA, RNA, proteins, and filaments of all sorts, are studied to better understand their behaviours and functions. Self-assembled biological membranes, or lipid bilayers, are also the focus of much attention as many life processes depend on these. Small lipid bilayers vesicles dubbed liposomes are also frequently used in the pharmaceutical and cosmetic industries. In this thesis, work is presented on both the elastic properties of polymers and the response of lipid bilayer vesicles to extrusion in narrow-channels. These two areas of research may seem disconnected but they both concern deformed soft materials. The thesis contains four articles: the first presenting a fundamental study of the entropic elasticity of circular chains; the second, a simple universal description of the effect of sequence on the elasticity of linear polymers such as DNA; the third, a model of the symmetric thermophoretic stretch of a nano-confined polymer; the fourth, a model that predicts the final sizes of vesicles obtained by pressure extrusion. These articles are preceded by an extensive introduction that covers all of the essential concepts and theories necessary to understand the work that has been done.
|
19 |
Deformed Soft Matter under ConstraintsBertrand, Martin 13 January 2012 (has links)
In the last few decades, an increasing number of physicists specialized in soft matter, including polymers, have turned their attention to biologically relevant materials. The properties of various molecules and fibres, such as DNA, RNA, proteins, and filaments of all sorts, are studied to better understand their behaviours and functions. Self-assembled biological membranes, or lipid bilayers, are also the focus of much attention as many life processes depend on these. Small lipid bilayers vesicles dubbed liposomes are also frequently used in the pharmaceutical and cosmetic industries. In this thesis, work is presented on both the elastic properties of polymers and the response of lipid bilayer vesicles to extrusion in narrow-channels. These two areas of research may seem disconnected but they both concern deformed soft materials. The thesis contains four articles: the first presenting a fundamental study of the entropic elasticity of circular chains; the second, a simple universal description of the effect of sequence on the elasticity of linear polymers such as DNA; the third, a model of the symmetric thermophoretic stretch of a nano-confined polymer; the fourth, a model that predicts the final sizes of vesicles obtained by pressure extrusion. These articles are preceded by an extensive introduction that covers all of the essential concepts and theories necessary to understand the work that has been done.
|
20 |
Problems at the Nexus of Geometry and Soft Matter: Rings, Ribbons and ShellsYong, Ee Hou 17 August 2012 (has links)
There has been an increasing appreciation of the role in which elasticity plays in soft matter. The understanding of many shapes and conformations of complex systems during equilibrium or non-equilibrium processes, ranging from the macroscopic to the microscopic, can be explained to a large extend by the theory of elasticity. We are motivated by older studies on how topology and shape couple in different novel systems and in this thesis, we present novel systems and tools for gaining fundamental insights into the wonderful world of geometry and soft matter. We first look at how defects, topology and geometry come together in the physics of thin membranes. Topological constraint plays a fundamental role on the morphology of crumpling membranes of genus zero and suggest how different fundamental shapes, such as platonic solids, can arise through a crumpling process. We present a way of classifying disclinations using a generalized “Casper-Klug” coordination number. We show that there exist symmetry breaking during the crumpling process, which can be described using Landau theory and that thin membranes preserve the memory of their defects. Next we consider the problem of the shapes of Bacillus spores and show how one can understand the folding patterns seen in bacterial coats by looking at the simplified problem of two concentric rings connected via springs. We show that when the two rings loses contact, rucks spontaneous formed leading to the complex folding patterns. We also develop a simple system of an extensible elastic on a spring support to study bifurcation in system that has adhesion. We explain the bifurcation diagram and show how it differs from the classical results. Lastly, we investigate the statistical mechanics of the Sadowsky ribbon in a similar spirit to the famous Kratky-Porod model. We present a detail theoretical and numerical calculations of the Sadowsky ribbon under the effect of external force and torsion. This model may be able to explain new and novel biopolymers ranging from actin, microtubules to rod-like viruses that lies outside the scope of WLC model. This concludes the thesis. / Physics
|
Page generated in 0.0692 seconds