• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 8
  • 8
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Kernel hardness, protein, and viscosity as predictors of udon-noodle quality

Ruddenklau, Helle G. 22 April 1994 (has links)
The Asian noodle market is responsible for the increased volume of wheat imported to that region in recent years. Soft white wheat produced in the Pacific Northwest is mainly used for baked products, whereas an Australian wheat, Australian Standard White, is preferred for noodles. To enter this market soft white-wheat cultivars with properties similar to or better than Australian Standard Whitemust be developed. This process is difficult as little is known of the factors that influence noodle quality. The use of grain-protein percentage, kernel hardness, and six viscosity parameters measured by the Rapid Visco Analyzer for predicting Japanese udonnoodle quality was evaluated. The Rapid Visco Analyzer was developed to indicate quickly and reliably the starch properties of a small wheat sample. Experimental material included advanced winter-wheat selections from the Oregon State University wheat-breeding program and Stephens, a widely grown winter-wheat cultivar. Two commercial spring cultivars, Owens and Klasic, thought to have good noodle quality were used as checks as was straight grade flour milled from Australian Standard White wheat. The material was grown at two locations (Rugg and Chambers) which represent diverse environments and management systems. Protein content, kernel hardness, and six viscosity parameters (Peakl, Low, Peak2, Peakl-Low, Peak2-Low, Peakl-Peak2) were measured. A sensoryevaluation panel evaluated the end product for surface appeal, texture, and taste. Within each location differences were found for all traits except protein content at the Rugg site and surface appeal at the Chamber location. Between the two experimental sites the only traits for which no differences were detected were kernel hardness and surface appeal. Significant entry by location interactions were observed for kernel hardness, Peakl- Peak2, and the three sensory-evaluation traits. Kernel hardness and grain-protein percentage were not associated, however both were negatively associated with the viscosity parameters. Associations of grain-protein, kernel hardness, and the viscosity parameters with the sensory evaluation traits were not statistically determined. A softer kernel texture appeared most useful for predicting Japanese udon-noodle quality as determined by sensory evaluation. Grain-protein percentage was not a good indicator by itself, but each cultivar may have a protein-content range within which noodle quality is optimized. This range may be influenced by the kernel texture. The viscosity parameters did not appear useful for predicting noodle quality as determined by the sensory evaluation panel. A more sensitive sensory evaluation method may be required to detect small however important differences and different viscosity parameters should be investigated. Based on the sensory-evaluation data several experimental entries appeared promising in having the desired quality profile for Japanese udon-noodles. / Graduation date: 1994
2

Wheat flour arabinoxylans in soft wheat end-use quality

Asawaprecha, Sunida 18 March 2004 (has links)
Little is known about the effects of arabinoxylans (AX) on noodle quality. The aim of this study was to observe interrelationships between wheat flour AX, SRC tests, and noodle quality attributes, and to investigate the use of SRCs to predict cookie diameter. Cookie diameter is the most common index of overall soft wheat quality used in practice. Duplicate samples of 63 soft white wheat (Triticum aestivum) varieties and breeding lines grown at Corvallis in 2002 were selected to study the relationships between flour and noodle characteristics. Kernel hardness was positively correlated with starch damage, total AX and water-extractable AX (WEAX) content but negatively correlated with break flour yield. In this set of samples, despite significant correlations, the sodium carbonate and sucrose SRC tests were not considered to be reliable predictors of cookie diameter due to low numerical correlation coefficients. A modified extraction method for WEAX-SE and WUAX-SE was optimized and reduced in scale. During method development, WUAX 1-SE and WUAX 2-SE fractions that had been treated with protease and amylase respectively were observed using SEHPLC. The equivalent fractions had been discarded in other studies. In this study, AX was found to present in these fractions. A subset of 12 lines was used for further AX extraction. WUAX 2-SE had the highest molecular weight, followed by WUAX1-SE, and then WEAX-SE. The molecular weights of WEAX-SE ranged from approximately 411,305 and 447,282. However, molecular weight of WUAX 1-SE and WUAX 2-SE could not be specifically defined in this study. In addition, WEAX-SE contained a higher degree of substitution than WUAX 1-SE and WUAX 2-SE. For the whole sample set, flour protein content was negatively correlated with ti5A cooked noodle hardness, adhesiveness and chewiness but positively correlated with springiness. At the very low flour protein contents of this sample set, protein composition, which related to lactic acid SRC, became more important for noodle texture. Both starch damage and sodium carbonate SRC were positively correlated with cooked noodle hardness and chewiness at t₀ and t [subscript 15A] Total AX and WUAX were positively correlated with adhesiveness at to, which might result from gummy and sticky characteristics of AX. Using the subset of 12 lines, described above, increased xylose and arabinose contents reflected overall higher AX abundance, and were related to harder kernel texture, poor milling properties. They were also related to higher water, carbonate and sucrose SRCs, and smaller cookie diameter. A/X ratios of WEAX-SE and WUAX 1-SE were positively correlated with flour yield and break flour yield. The WUAX 2-SE fraction seemed to behave different from the WEAX-SE and WUAX 1-SE fractions. The relationships between A/G ratio, and milling characteristics and SRC were opposite to A/X ratios for all fractions. Decreased MW and increased abundance of WUAX in this sample set was related to poorer milling characteristics. There appeared to be no direct systematic relationships between AX and cooked noodle texture parameters in this study. However, AX content appeared to affect noodle texture indirectly, mediated through the effects ofAX on kernel hardness, milling properties, starch damage, reduced FSV, and hence harder noodle texture. Kernel hardness index, flour yield, break flour yield and tisw cooked noodle hardness were able to be predicted with some confidence using stepwise multiple regressions that used selected parameters from the WEAX, WUAX 1-SE and WUAX 2-SE fractions. / Graduation date: 2004
3

A Chemical Analysis of Soft Wheat

Truitt, Jack January 1940 (has links)
The purpose of this piece of research is to determine the chemical composition of soft winter wheat, and to make a comparative study of it. A study is also made concerning its possibilities as a balanced food.
4

Conformational Change in the Structure of Wheat Proteins During Mixing in Hard and Soft Wheat Doughs

Jazaeri, Sahar 19 March 2013 (has links)
This thesis describes an investigation of the mechanistic differences of hard and soft wheat varieties in the course of dough formation. These two classes of wheat exhibit dissimilar end-use, as hard wheat flour is known for its bread making attributes, whereas soft wheat flour is suitable for cake and cookie production. This difference is related to the grain hardness, protein content and property of gluten, in addition to chemical interactions that are occurring during dough making. Covalent and hydrophobic interactions, as well as hydrogen bond formation, are the main interactions that take place during dough mixing. However, the contribution of each interaction in dough formation of hard and soft wheat is not known. One variety of hard and one variety of soft wheat flour were mixed to their optimum hydration level (500 BU), as determined by farinograph. The extent of covalent interactions of gluten proteins during dough mixing was examined by monitoring changes in the solubility of flour proteins in a 2% Sodium Dodecyl Sulfate (SDS) media. Moreover, the contribution of thiol groups to covalent bond was examined by measuring the changes in the accessible thiols throughout the mixing. Lower extractability of proteins and accessible thiols of hard wheat dough, compared to soft wheat dough, indicated the predominant role of covalent interactions in hard wheat dough. The complementary results from Size Exclusion High Performance Liquid Chromatography (SE-HPLC) indicated that covalent interaction of hard wheat dough primarily occurs between Low Molecular Weight (LMW) and High Molecular Weight (HMW) gluten proteins, whereas this interaction mainly occurs among LMW proteins in soft wheat doughs. Fewer hydrophobic interactions in hard wheat dough in compare with soft wheat measured by Front-face fluorescence spectroscopy indicated that this interaction is more dominant in soft wheat dough. Study of the conformational change in secondary structure of protein (indirect approach to monitor hydrogen bond) by fourier transform infrared (FTIR) spectroscopy showed that β-sheets are formed in both varieties at their optimum dough strength. In hard wheat dough this structure resulted mainly from disulfide linkages, whereas in soft wheat dough this structure is more likely the result of hydrophobic interactions.
5

Effect of 1B/1R Chromosomal Translocation on Dough Rheology of Soft Red Winter Wheat Flour

Uriyo, Maria Jr. 26 April 1998 (has links)
Nine 1B/1R translocated soft red winter wheat (SRWW) varieties and six non-1B/1R varieties from two crop years (1995-1996 and 1996-1997), grown in two Virginia locations (Warsaw and Blacksburg), were studied to evaluate the effects of the 1R rye chromosome on soft wheat flour quality and baking performance. The presence of the 1B/1R chromosomal translocation in wheat has been reported to provide disease resistance, but produce sticky doughs. The 1995-1996 and 1996-1997 SRWW flours were subjected to farinograph analysis and dough stickiness testing. Dough stickiness was determined by the Schwarzlaff-Shepherd Dough Stripping Method. Wheat samples from 1995-1996 were also analyzed for protein, ash, and moisture content, alkaline water retention capacity (AWRC), cookie diameter, tensile stress and strain, and by ¹³C nuclear magnetic resonance (¹³C-NMR) spectroscopy techniques. Significant (p = 0.0001) negative correlations were found between AWRC and cookie diameter of SRWWs grown in Warsaw and Blacksburg. Location was found to exert a significant effect on AWRC, cookie diameter and stickiness (p < 0.05). Farinograph data revealed that mixing characteristics of SRWW were affected significantly by variety, crop year and location (p < 0.05). In some cases the 1B/1R varieties had lower breakdown rates, longer departure times (DT) and lower mixing tolerance index (MTI), than their non-1B/1R counterparts. There was a significant difference (p = 0.0133) in the stickiness of 1B/1R and non-1B/1R samples from Blacksburg. However no such difference was found in the corresponding Warsaw samples (p = 0.9826), indicating that location exerted a significant effect on stickiness. Two flour samples exhibiting stickiness (one with and one without 1B/1R) and two non-sticky samples (one with and one without the 1B/1R) were fractionated into gluten, starch and water-solubles (WS) in order to determine if the sticky dough factor resided in the 1B/1R and / or non-1B/1R WS. The peel time of the interchanged samples, as in the case of 'Massey' flour combined with the WS from VA52-22, increased to 79 seconds from the 30 seconds originally observed in the Massey flour. However when gluten and starch fractions from a non-sticky, non-1B/1R sample,VA54-21, were mixed with WS from VA54-211 (sticky, 1B/1R), the peel time went from 18 in the original flour to 8 seconds. Tensile measurements showed dough stress was not significantly affected by the presence or absence of 1B/1R (p = 0.7057). However, dough strain was lower in 1B/1R translocated SRWWs (p = 0.0048). A ¹³C-NMR spectra failed to show differences amongst selected 1B/1R and non-1B/1R dough samples. Proton relaxation time (T1-rho-[H]) - a ¹³C-NMR technique, indicated that water did not exert a significant influence on the molecular dynamics within the dough samples of Massey (non-1B/1R), VA54-211 (1B/1R) and VA52-22 (1B/1R). However, the non-sticky, non-1B/1R sample (VA54-21) had a higher proton relaxation time at 62 ppm which may indicate the size of starch-protein particles in VA54-21 doughs were larger and less flexible than in the other three doughs. / Ph. D.
6

Effect of dough conditioners on the bread-making qualities of soft wheat flour

Chlapowski, Yolantha Sophie 28 July 2010 (has links)
Low-protein (7.35%) and high-protein (11.59%) flours were tested for bread baking with and without the addition of two substances commonly used as dough conditioners: ascorbic acid and diacetyl tartaric esters of monoglycerides (DATEM). The breadmaking properties of the flours were evaluated by measuring the loaf characteristics by objective and sensory evaluation. In addition, the effect of the dough conditioners on the rate of staling of baked bread was examined. No significant differences were found among the treatments with respect to volume. moisture content, or crumb color. Loaves baked with the high-protein flour had significantly darker crust colors. High-protein loaves were significantly less tender. The sensory panel found no significant differences in crumb color t aroma, compressibility, mouth feel, moistness, flavor, or overall aftertaste. The panel did find that high-protein loaves were significantly darker in crust color, and loaves baked with high-protein flour and ascorbic acid had significantly larger cell sizes and less uniform cell structures. The addition of DATE-M to breads made with either flour resulted in significantly decreased rates of staling. Breads made with the high-protein flour staled slower than their law-protein counterparts with or without dough conditioners. In conclusion, the bread-making characteristics of both flours were good and resulted in bread of good quality, even without conditioners present. DATEM can be added to retard the rate of staling, but more is needed with lower protein flours. / Master of Science
7

Analytical and nutritional aspects of folate in cereals /

Johansson, Madelene, January 2005 (has links) (PDF)
Diss. (sammanfattning) Uppsala : Sveriges lantbruksuniviversitet, 2005. / Härtill 5 uppsatser.
8

Možnosti rozšíření agrobiodiverzity na orné půdě v ekologickém zemědělství díky využití genových zdrojů jarních pšenic / Extension of agrobiodiverzity on the organic farming arable land thanks to using of genetic resources of spring wheat

JANČÍKOVÁ, Lucie January 2009 (has links)
This Thesis, focused on an evaluation of possible utilization of selected variety of wheat (Triticum aestivum L. and Triticum dicoccum Schrank) in organic farming in the light of possible expansion of agrobiodiverzity on an arable land, is connected with the Bachelor´s Thesis. The starting point of the process was a choice of twelve varieties based on previous screening. Small parcel of land experiments (2007 {--} 2008) with six genetic resources of emmer wheat and six varieties of sown wheat (4 old and land races, 2 modern check control varieties) have been grown on an experimental field of University of South Bohemian and Gene bank at Research Institute of Crop Production (VURV) Prague and subsequent evaluation of morphological, biological, economical and qualitative parameters as well. The results show, that genetic resources of wheat have lots of positive and negative features as well. A speed of growth, a height of plant or a tuft shape positively makes for an increment of a competition ability to weed. On the other hand, farming features e.g. a harvest index, a productivity of spike or a total yield is high variable by single kinds and compared to modern control varieties on a lowered level. Emmer wheat yields qualitative grain (high content of protein) in low imput farming. That is much better for other purposes than typical baker´s work (low swell of proteins expressed by Zeleny´s sedimentation analysis). This type of grown is suitable for organic farming and its growing currently contributes to expansion agrobiodiverzity on an arable land.

Page generated in 0.0843 seconds